Metamath Proof Explorer


Theorem lejdiri

Description: An ortholattice is distributive in one ordering direction (join version). (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses ledi.1
|- A e. CH
ledi.2
|- B e. CH
ledi.3
|- C e. CH
Assertion lejdiri
|- ( ( A i^i B ) vH C ) C_ ( ( A vH C ) i^i ( B vH C ) )

Proof

Step Hyp Ref Expression
1 ledi.1
 |-  A e. CH
2 ledi.2
 |-  B e. CH
3 ledi.3
 |-  C e. CH
4 3 1 2 lejdii
 |-  ( C vH ( A i^i B ) ) C_ ( ( C vH A ) i^i ( C vH B ) )
5 1 2 chincli
 |-  ( A i^i B ) e. CH
6 5 3 chjcomi
 |-  ( ( A i^i B ) vH C ) = ( C vH ( A i^i B ) )
7 1 3 chjcomi
 |-  ( A vH C ) = ( C vH A )
8 2 3 chjcomi
 |-  ( B vH C ) = ( C vH B )
9 7 8 ineq12i
 |-  ( ( A vH C ) i^i ( B vH C ) ) = ( ( C vH A ) i^i ( C vH B ) )
10 4 6 9 3sstr4i
 |-  ( ( A i^i B ) vH C ) C_ ( ( A vH C ) i^i ( B vH C ) )