Description: A join's first argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinval2.b | |- B = ( Base ` K ) | |
| joinval2.l | |- .<_ = ( le ` K ) | ||
| joinval2.j | |- .\/ = ( join ` K ) | ||
| joinval2.k | |- ( ph -> K e. V ) | ||
| joinval2.x | |- ( ph -> X e. B ) | ||
| joinval2.y | |- ( ph -> Y e. B ) | ||
| joinlem.e | |- ( ph -> <. X , Y >. e. dom .\/ ) | ||
| Assertion | lejoin1 | |- ( ph -> X .<_ ( X .\/ Y ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | joinval2.b | |- B = ( Base ` K ) | |
| 2 | joinval2.l | |- .<_ = ( le ` K ) | |
| 3 | joinval2.j | |- .\/ = ( join ` K ) | |
| 4 | joinval2.k | |- ( ph -> K e. V ) | |
| 5 | joinval2.x | |- ( ph -> X e. B ) | |
| 6 | joinval2.y | |- ( ph -> Y e. B ) | |
| 7 | joinlem.e | |- ( ph -> <. X , Y >. e. dom .\/ ) | |
| 8 | 1 2 3 4 5 6 7 | joinlem | |- ( ph -> ( ( X .<_ ( X .\/ Y ) /\ Y .<_ ( X .\/ Y ) ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) ) | 
| 9 | 8 | simplld | |- ( ph -> X .<_ ( X .\/ Y ) ) |