Step |
Hyp |
Ref |
Expression |
1 |
|
lenlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
2 |
|
axlttri |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> -. ( B = A \/ A < B ) ) ) |
3 |
2
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> -. ( B = A \/ A < B ) ) ) |
4 |
3
|
con2bid |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B = A \/ A < B ) <-> -. B < A ) ) |
5 |
|
eqcom |
|- ( B = A <-> A = B ) |
6 |
5
|
orbi1i |
|- ( ( B = A \/ A < B ) <-> ( A = B \/ A < B ) ) |
7 |
|
orcom |
|- ( ( A = B \/ A < B ) <-> ( A < B \/ A = B ) ) |
8 |
6 7
|
bitri |
|- ( ( B = A \/ A < B ) <-> ( A < B \/ A = B ) ) |
9 |
4 8
|
bitr3di |
|- ( ( A e. RR /\ B e. RR ) -> ( -. B < A <-> ( A < B \/ A = B ) ) ) |
10 |
1 9
|
bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |