Step |
Hyp |
Ref |
Expression |
1 |
|
ltleadd |
|- ( ( ( B e. RR /\ A e. RR ) /\ ( D e. RR /\ C e. RR ) ) -> ( ( B < D /\ A <_ C ) -> ( B + A ) < ( D + C ) ) ) |
2 |
1
|
ancomsd |
|- ( ( ( B e. RR /\ A e. RR ) /\ ( D e. RR /\ C e. RR ) ) -> ( ( A <_ C /\ B < D ) -> ( B + A ) < ( D + C ) ) ) |
3 |
2
|
ancom2s |
|- ( ( ( B e. RR /\ A e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B < D ) -> ( B + A ) < ( D + C ) ) ) |
4 |
3
|
ancom1s |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B < D ) -> ( B + A ) < ( D + C ) ) ) |
5 |
|
recn |
|- ( A e. RR -> A e. CC ) |
6 |
|
recn |
|- ( B e. RR -> B e. CC ) |
7 |
|
addcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
8 |
5 6 7
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) |
9 |
|
recn |
|- ( C e. RR -> C e. CC ) |
10 |
|
recn |
|- ( D e. RR -> D e. CC ) |
11 |
|
addcom |
|- ( ( C e. CC /\ D e. CC ) -> ( C + D ) = ( D + C ) ) |
12 |
9 10 11
|
syl2an |
|- ( ( C e. RR /\ D e. RR ) -> ( C + D ) = ( D + C ) ) |
13 |
8 12
|
breqan12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + B ) < ( C + D ) <-> ( B + A ) < ( D + C ) ) ) |
14 |
4 13
|
sylibrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B < D ) -> ( A + B ) < ( C + D ) ) ) |