Description: Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | |- ( ph -> A e. RR ) | |
| ltnegd.2 | |- ( ph -> B e. RR ) | ||
| ltadd1d.3 | |- ( ph -> C e. RR ) | ||
| lt2addd.4 | |- ( ph -> D e. RR ) | ||
| leltaddd.5 | |- ( ph -> A <_ C ) | ||
| leltaddd.6 | |- ( ph -> B < D ) | ||
| Assertion | leltaddd | |- ( ph -> ( A + B ) < ( C + D ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | leidd.1 | |- ( ph -> A e. RR ) | |
| 2 | ltnegd.2 | |- ( ph -> B e. RR ) | |
| 3 | ltadd1d.3 | |- ( ph -> C e. RR ) | |
| 4 | lt2addd.4 | |- ( ph -> D e. RR ) | |
| 5 | leltaddd.5 | |- ( ph -> A <_ C ) | |
| 6 | leltaddd.6 | |- ( ph -> B < D ) | |
| 7 | leltadd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B < D ) -> ( A + B ) < ( C + D ) ) ) | |
| 8 | 1 2 3 4 7 | syl22anc | |- ( ph -> ( ( A <_ C /\ B < D ) -> ( A + B ) < ( C + D ) ) ) | 
| 9 | 5 6 8 | mp2and | |- ( ph -> ( A + B ) < ( C + D ) ) |