Description: Transitive law, weaker form of lelttr . (Contributed by AV, 14-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | leltletr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A <_ C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ C e. RR ) ) |
|
2 | lelttr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A < C ) ) |
|
3 | ltle | |- ( ( A e. RR /\ C e. RR ) -> ( A < C -> A <_ C ) ) |
|
4 | 1 2 3 | sylsyld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A <_ C ) ) |