Metamath Proof Explorer


Theorem leltned

Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ltd.2
|- ( ph -> B e. RR )
leltned.3
|- ( ph -> A <_ B )
Assertion leltned
|- ( ph -> ( A < B <-> B =/= A ) )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ltd.2
 |-  ( ph -> B e. RR )
3 leltned.3
 |-  ( ph -> A <_ B )
4 leltne
 |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A < B <-> B =/= A ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A < B <-> B =/= A ) )