Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltd.1 | |- ( ph -> A e. RR ) |
|
ltd.2 | |- ( ph -> B e. RR ) |
||
leltned.3 | |- ( ph -> A <_ B ) |
||
Assertion | leltned | |- ( ph -> ( A < B <-> B =/= A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | |- ( ph -> A e. RR ) |
|
2 | ltd.2 | |- ( ph -> B e. RR ) |
|
3 | leltned.3 | |- ( ph -> A <_ B ) |
|
4 | leltne | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A < B <-> B =/= A ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A < B <-> B =/= A ) ) |