Description: Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltd.1 | |- ( ph -> A e. RR ) |
|
ltd.2 | |- ( ph -> B e. RR ) |
||
letrd.3 | |- ( ph -> C e. RR ) |
||
lelttrd.4 | |- ( ph -> A <_ B ) |
||
lelttrd.5 | |- ( ph -> B < C ) |
||
Assertion | lelttrd | |- ( ph -> A < C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | |- ( ph -> A e. RR ) |
|
2 | ltd.2 | |- ( ph -> B e. RR ) |
|
3 | letrd.3 | |- ( ph -> C e. RR ) |
|
4 | lelttrd.4 | |- ( ph -> A <_ B ) |
|
5 | lelttrd.5 | |- ( ph -> B < C ) |
|
6 | lelttr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A < C ) ) |
|
7 | 1 2 3 6 | syl3anc | |- ( ph -> ( ( A <_ B /\ B < C ) -> A < C ) ) |
8 | 4 5 7 | mp2and | |- ( ph -> A < C ) |