| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lelttrdi.r |
|- ( ph -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
| 2 |
|
lelttrdi.l |
|- ( ph -> B <_ C ) |
| 3 |
1
|
simp1d |
|- ( ph -> A e. RR ) |
| 4 |
3
|
adantr |
|- ( ( ph /\ A < B ) -> A e. RR ) |
| 5 |
1
|
simp2d |
|- ( ph -> B e. RR ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ A < B ) -> B e. RR ) |
| 7 |
1
|
simp3d |
|- ( ph -> C e. RR ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ A < B ) -> C e. RR ) |
| 9 |
|
simpr |
|- ( ( ph /\ A < B ) -> A < B ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ A < B ) -> B <_ C ) |
| 11 |
4 6 8 9 10
|
ltletrd |
|- ( ( ph /\ A < B ) -> A < C ) |
| 12 |
11
|
ex |
|- ( ph -> ( A < B -> A < C ) ) |