Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lelttrdi.r | |- ( ph -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
|
lelttrdi.l | |- ( ph -> B <_ C ) |
||
Assertion | lelttrdi | |- ( ph -> ( A < B -> A < C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lelttrdi.r | |- ( ph -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
|
2 | lelttrdi.l | |- ( ph -> B <_ C ) |
|
3 | 1 | simp1d | |- ( ph -> A e. RR ) |
4 | 3 | adantr | |- ( ( ph /\ A < B ) -> A e. RR ) |
5 | 1 | simp2d | |- ( ph -> B e. RR ) |
6 | 5 | adantr | |- ( ( ph /\ A < B ) -> B e. RR ) |
7 | 1 | simp3d | |- ( ph -> C e. RR ) |
8 | 7 | adantr | |- ( ( ph /\ A < B ) -> C e. RR ) |
9 | simpr | |- ( ( ph /\ A < B ) -> A < B ) |
|
10 | 2 | adantr | |- ( ( ph /\ A < B ) -> B <_ C ) |
11 | 4 6 8 9 10 | ltletrd | |- ( ( ph /\ A < B ) -> A < C ) |
12 | 11 | ex | |- ( ph -> ( A < B -> A < C ) ) |