Metamath Proof Explorer


Theorem lelttric

Description: Trichotomy law. (Contributed by NM, 4-Apr-2005)

Ref Expression
Assertion lelttric
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B \/ B < A ) )

Proof

Step Hyp Ref Expression
1 pm2.1
 |-  ( -. B < A \/ B < A )
2 lenlt
 |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) )
3 2 orbi1d
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( A <_ B \/ B < A ) <-> ( -. B < A \/ B < A ) ) )
4 1 3 mpbiri
 |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B \/ B < A ) )