Description: A meet's first argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetval2.b | |- B = ( Base ` K ) |
|
| meetval2.l | |- .<_ = ( le ` K ) |
||
| meetval2.m | |- ./\ = ( meet ` K ) |
||
| meetval2.k | |- ( ph -> K e. V ) |
||
| meetval2.x | |- ( ph -> X e. B ) |
||
| meetval2.y | |- ( ph -> Y e. B ) |
||
| meetlem.e | |- ( ph -> <. X , Y >. e. dom ./\ ) |
||
| Assertion | lemeet1 | |- ( ph -> ( X ./\ Y ) .<_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetval2.b | |- B = ( Base ` K ) |
|
| 2 | meetval2.l | |- .<_ = ( le ` K ) |
|
| 3 | meetval2.m | |- ./\ = ( meet ` K ) |
|
| 4 | meetval2.k | |- ( ph -> K e. V ) |
|
| 5 | meetval2.x | |- ( ph -> X e. B ) |
|
| 6 | meetval2.y | |- ( ph -> Y e. B ) |
|
| 7 | meetlem.e | |- ( ph -> <. X , Y >. e. dom ./\ ) |
|
| 8 | 1 2 3 4 5 6 7 | meetlem | |- ( ph -> ( ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) .<_ Y ) /\ A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) ) ) |
| 9 | 8 | simplld | |- ( ph -> ( X ./\ Y ) .<_ X ) |