Step |
Hyp |
Ref |
Expression |
1 |
|
ltmul1 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A x. C ) < ( B x. C ) ) ) |
2 |
|
recn |
|- ( A e. RR -> A e. CC ) |
3 |
|
recn |
|- ( B e. RR -> B e. CC ) |
4 |
|
recn |
|- ( C e. RR -> C e. CC ) |
5 |
4
|
adantr |
|- ( ( C e. RR /\ 0 < C ) -> C e. CC ) |
6 |
|
gt0ne0 |
|- ( ( C e. RR /\ 0 < C ) -> C =/= 0 ) |
7 |
5 6
|
jca |
|- ( ( C e. RR /\ 0 < C ) -> ( C e. CC /\ C =/= 0 ) ) |
8 |
|
mulcan2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. C ) = ( B x. C ) <-> A = B ) ) |
9 |
2 3 7 8
|
syl3an |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) = ( B x. C ) <-> A = B ) ) |
10 |
9
|
bicomd |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A = B <-> ( A x. C ) = ( B x. C ) ) ) |
11 |
1 10
|
orbi12d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A < B \/ A = B ) <-> ( ( A x. C ) < ( B x. C ) \/ ( A x. C ) = ( B x. C ) ) ) ) |
12 |
|
leloe |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
13 |
12
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
14 |
|
remulcl |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
15 |
14
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
16 |
|
remulcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
17 |
16
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
18 |
15 17
|
leloed |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. C ) <_ ( B x. C ) <-> ( ( A x. C ) < ( B x. C ) \/ ( A x. C ) = ( B x. C ) ) ) ) |
19 |
18
|
3adant3r |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) <_ ( B x. C ) <-> ( ( A x. C ) < ( B x. C ) \/ ( A x. C ) = ( B x. C ) ) ) ) |
20 |
11 13 19
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A x. C ) <_ ( B x. C ) ) ) |