| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
|- 0 e. RR |
| 2 |
|
leloe |
|- ( ( 0 e. RR /\ C e. RR ) -> ( 0 <_ C <-> ( 0 < C \/ 0 = C ) ) ) |
| 3 |
1 2
|
mpan |
|- ( C e. RR -> ( 0 <_ C <-> ( 0 < C \/ 0 = C ) ) ) |
| 4 |
3
|
pm5.32i |
|- ( ( C e. RR /\ 0 <_ C ) <-> ( C e. RR /\ ( 0 < C \/ 0 = C ) ) ) |
| 5 |
|
lemul1 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A x. C ) <_ ( B x. C ) ) ) |
| 6 |
5
|
biimpd |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) |
| 7 |
6
|
3expia |
|- ( ( A e. RR /\ B e. RR ) -> ( ( C e. RR /\ 0 < C ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 8 |
7
|
com12 |
|- ( ( C e. RR /\ 0 < C ) -> ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 9 |
1
|
leidi |
|- 0 <_ 0 |
| 10 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 11 |
10
|
mul01d |
|- ( A e. RR -> ( A x. 0 ) = 0 ) |
| 12 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 13 |
12
|
mul01d |
|- ( B e. RR -> ( B x. 0 ) = 0 ) |
| 14 |
11 13
|
breqan12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A x. 0 ) <_ ( B x. 0 ) <-> 0 <_ 0 ) ) |
| 15 |
9 14
|
mpbiri |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. 0 ) <_ ( B x. 0 ) ) |
| 16 |
|
oveq2 |
|- ( 0 = C -> ( A x. 0 ) = ( A x. C ) ) |
| 17 |
|
oveq2 |
|- ( 0 = C -> ( B x. 0 ) = ( B x. C ) ) |
| 18 |
16 17
|
breq12d |
|- ( 0 = C -> ( ( A x. 0 ) <_ ( B x. 0 ) <-> ( A x. C ) <_ ( B x. C ) ) ) |
| 19 |
15 18
|
imbitrid |
|- ( 0 = C -> ( ( A e. RR /\ B e. RR ) -> ( A x. C ) <_ ( B x. C ) ) ) |
| 20 |
19
|
a1dd |
|- ( 0 = C -> ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 21 |
20
|
adantl |
|- ( ( C e. RR /\ 0 = C ) -> ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 22 |
8 21
|
jaodan |
|- ( ( C e. RR /\ ( 0 < C \/ 0 = C ) ) -> ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 23 |
4 22
|
sylbi |
|- ( ( C e. RR /\ 0 <_ C ) -> ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 24 |
23
|
com12 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( C e. RR /\ 0 <_ C ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 25 |
24
|
3impia |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) |
| 26 |
25
|
imp |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( A x. C ) <_ ( B x. C ) ) |