Step |
Hyp |
Ref |
Expression |
1 |
|
lemul1a |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( A x. C ) <_ ( B x. C ) ) |
2 |
|
recn |
|- ( A e. RR -> A e. CC ) |
3 |
|
recn |
|- ( C e. RR -> C e. CC ) |
4 |
|
mulcom |
|- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
5 |
2 3 4
|
syl2an |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) = ( C x. A ) ) |
6 |
5
|
adantrr |
|- ( ( A e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( A x. C ) = ( C x. A ) ) |
7 |
6
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( A x. C ) = ( C x. A ) ) |
8 |
7
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( A x. C ) = ( C x. A ) ) |
9 |
|
recn |
|- ( B e. RR -> B e. CC ) |
10 |
|
mulcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
11 |
9 3 10
|
syl2an |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) = ( C x. B ) ) |
12 |
11
|
adantrr |
|- ( ( B e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( B x. C ) = ( C x. B ) ) |
13 |
12
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( B x. C ) = ( C x. B ) ) |
14 |
13
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( B x. C ) = ( C x. B ) ) |
15 |
1 8 14
|
3brtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( C x. A ) <_ ( C x. B ) ) |