Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltmul1d.1 | |- ( ph -> A e. RR ) |
|
| ltmul1d.2 | |- ( ph -> B e. RR ) |
||
| ltmul1d.3 | |- ( ph -> C e. RR+ ) |
||
| Assertion | lemuldivd | |- ( ph -> ( ( A x. C ) <_ B <-> A <_ ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1d.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltmul1d.2 | |- ( ph -> B e. RR ) |
|
| 3 | ltmul1d.3 | |- ( ph -> C e. RR+ ) |
|
| 4 | 3 | rpregt0d | |- ( ph -> ( C e. RR /\ 0 < C ) ) |
| 5 | lemuldiv | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) <_ B <-> A <_ ( B / C ) ) ) |
|
| 6 | 1 2 4 5 | syl3anc | |- ( ph -> ( ( A x. C ) <_ B <-> A <_ ( B / C ) ) ) |