| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( W e. Word A /\ F : A --> B ) -> F : A --> B ) | 
						
							| 2 |  | wrdf |  |-  ( W e. Word A -> W : ( 0 ..^ ( # ` W ) ) --> A ) | 
						
							| 3 | 2 | adantr |  |-  ( ( W e. Word A /\ F : A --> B ) -> W : ( 0 ..^ ( # ` W ) ) --> A ) | 
						
							| 4 |  | fco |  |-  ( ( F : A --> B /\ W : ( 0 ..^ ( # ` W ) ) --> A ) -> ( F o. W ) : ( 0 ..^ ( # ` W ) ) --> B ) | 
						
							| 5 | 1 3 4 | syl2anc |  |-  ( ( W e. Word A /\ F : A --> B ) -> ( F o. W ) : ( 0 ..^ ( # ` W ) ) --> B ) | 
						
							| 6 |  | ffn |  |-  ( ( F o. W ) : ( 0 ..^ ( # ` W ) ) --> B -> ( F o. W ) Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 7 |  | hashfn |  |-  ( ( F o. W ) Fn ( 0 ..^ ( # ` W ) ) -> ( # ` ( F o. W ) ) = ( # ` ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 9 |  | ffn |  |-  ( W : ( 0 ..^ ( # ` W ) ) --> A -> W Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 10 |  | hashfn |  |-  ( W Fn ( 0 ..^ ( # ` W ) ) -> ( # ` W ) = ( # ` ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 11 | 3 9 10 | 3syl |  |-  ( ( W e. Word A /\ F : A --> B ) -> ( # ` W ) = ( # ` ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 12 | 8 11 | eqtr4d |  |-  ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |