| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 2 |
|
leneg |
|- ( ( -u A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ -u -u A ) ) |
| 3 |
1 2
|
sylan |
|- ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ -u -u A ) ) |
| 4 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 5 |
4
|
negnegd |
|- ( A e. RR -> -u -u A = A ) |
| 6 |
5
|
breq2d |
|- ( A e. RR -> ( -u B <_ -u -u A <-> -u B <_ A ) ) |
| 7 |
6
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> ( -u B <_ -u -u A <-> -u B <_ A ) ) |
| 8 |
3 7
|
bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ A ) ) |