Metamath Proof Explorer


Theorem lenegcon1i

Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 6-Apr-2005)

Ref Expression
Hypotheses lt2.1
|- A e. RR
lt2.2
|- B e. RR
Assertion lenegcon1i
|- ( -u A <_ B <-> -u B <_ A )

Proof

Step Hyp Ref Expression
1 lt2.1
 |-  A e. RR
2 lt2.2
 |-  B e. RR
3 lenegcon1
 |-  ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ A ) )
4 1 2 3 mp2an
 |-  ( -u A <_ B <-> -u B <_ A )