Metamath Proof Explorer


Theorem lenegcon2

Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 8-Oct-2005)

Ref Expression
Assertion lenegcon2
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ -u B <-> B <_ -u A ) )

Proof

Step Hyp Ref Expression
1 renegcl
 |-  ( B e. RR -> -u B e. RR )
2 leneg
 |-  ( ( A e. RR /\ -u B e. RR ) -> ( A <_ -u B <-> -u -u B <_ -u A ) )
3 1 2 sylan2
 |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ -u B <-> -u -u B <_ -u A ) )
4 recn
 |-  ( B e. RR -> B e. CC )
5 4 negnegd
 |-  ( B e. RR -> -u -u B = B )
6 5 adantl
 |-  ( ( A e. RR /\ B e. RR ) -> -u -u B = B )
7 6 breq1d
 |-  ( ( A e. RR /\ B e. RR ) -> ( -u -u B <_ -u A <-> B <_ -u A ) )
8 3 7 bitrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ -u B <-> B <_ -u A ) )