Metamath Proof Explorer


Theorem lenelioc

Description: A real number smaller than or equal to the lower bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses lenelioc.1
|- ( ph -> A e. RR* )
lenelioc.2
|- ( ph -> B e. RR* )
lenelioc.3
|- ( ph -> C e. RR* )
lenelioc.4
|- ( ph -> C <_ A )
Assertion lenelioc
|- ( ph -> -. C e. ( A (,] B ) )

Proof

Step Hyp Ref Expression
1 lenelioc.1
 |-  ( ph -> A e. RR* )
2 lenelioc.2
 |-  ( ph -> B e. RR* )
3 lenelioc.3
 |-  ( ph -> C e. RR* )
4 lenelioc.4
 |-  ( ph -> C <_ A )
5 3 1 xrlenltd
 |-  ( ph -> ( C <_ A <-> -. A < C ) )
6 4 5 mpbid
 |-  ( ph -> -. A < C )
7 6 intn3an2d
 |-  ( ph -> -. ( C e. RR* /\ A < C /\ C <_ B ) )
8 elioc1
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) )
9 1 2 8 syl2anc
 |-  ( ph -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) )
10 7 9 mtbird
 |-  ( ph -> -. C e. ( A (,] B ) )