Step |
Hyp |
Ref |
Expression |
1 |
|
lenelioc.1 |
|- ( ph -> A e. RR* ) |
2 |
|
lenelioc.2 |
|- ( ph -> B e. RR* ) |
3 |
|
lenelioc.3 |
|- ( ph -> C e. RR* ) |
4 |
|
lenelioc.4 |
|- ( ph -> C <_ A ) |
5 |
3 1
|
xrlenltd |
|- ( ph -> ( C <_ A <-> -. A < C ) ) |
6 |
4 5
|
mpbid |
|- ( ph -> -. A < C ) |
7 |
6
|
intn3an2d |
|- ( ph -> -. ( C e. RR* /\ A < C /\ C <_ B ) ) |
8 |
|
elioc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) ) |
9 |
1 2 8
|
syl2anc |
|- ( ph -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) ) |
10 |
7 9
|
mtbird |
|- ( ph -> -. C e. ( A (,] B ) ) |