Metamath Proof Explorer


Theorem leneltd

Description: 'Less than or equal to' and 'not equals' implies 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ltd.2
|- ( ph -> B e. RR )
leltned.3
|- ( ph -> A <_ B )
leneltd.4
|- ( ph -> B =/= A )
Assertion leneltd
|- ( ph -> A < B )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ltd.2
 |-  ( ph -> B e. RR )
3 leltned.3
 |-  ( ph -> A <_ B )
4 leneltd.4
 |-  ( ph -> B =/= A )
5 1 2 3 leltned
 |-  ( ph -> ( A < B <-> B =/= A ) )
6 4 5 mpbird
 |-  ( ph -> A < B )