Metamath Proof Explorer


Theorem lenpfxcctswrd

Description: The length of the concatenation of the prefix of a word and the rest of the word is the length of the word. (Contributed by AV, 21-Oct-2018) (Revised by AV, 9-May-2020)

Ref Expression
Assertion lenpfxcctswrd
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( ( W prefix M ) ++ ( W substr <. M , ( # ` W ) >. ) ) ) = ( # ` W ) )

Proof

Step Hyp Ref Expression
1 pfxcctswrd
 |-  ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( ( W prefix M ) ++ ( W substr <. M , ( # ` W ) >. ) ) = W )
2 1 fveq2d
 |-  ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( ( W prefix M ) ++ ( W substr <. M , ( # ` W ) >. ) ) ) = ( # ` W ) )