Metamath Proof Explorer


Theorem lensymd

Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ltd.2
|- ( ph -> B e. RR )
lensymd.3
|- ( ph -> A <_ B )
Assertion lensymd
|- ( ph -> -. B < A )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ltd.2
 |-  ( ph -> B e. RR )
3 lensymd.3
 |-  ( ph -> A <_ B )
4 1 2 lenltd
 |-  ( ph -> ( A <_ B <-> -. B < A ) )
5 3 4 mpbid
 |-  ( ph -> -. B < A )