Step |
Hyp |
Ref |
Expression |
1 |
|
leordtval.1 |
|- A = ran ( x e. RR* |-> ( x (,] +oo ) ) |
2 |
|
leordtval.2 |
|- B = ran ( x e. RR* |-> ( -oo [,) x ) ) |
3 |
|
letsr |
|- <_ e. TosetRel |
4 |
|
ledm |
|- RR* = dom <_ |
5 |
1
|
leordtvallem1 |
|- A = ran ( x e. RR* |-> { y e. RR* | -. y <_ x } ) |
6 |
1 2
|
leordtvallem2 |
|- B = ran ( x e. RR* |-> { y e. RR* | -. x <_ y } ) |
7 |
4 5 6
|
ordtval |
|- ( <_ e. TosetRel -> ( ordTop ` <_ ) = ( topGen ` ( fi ` ( { RR* } u. ( A u. B ) ) ) ) ) |
8 |
3 7
|
ax-mp |
|- ( ordTop ` <_ ) = ( topGen ` ( fi ` ( { RR* } u. ( A u. B ) ) ) ) |
9 |
|
snex |
|- { RR* } e. _V |
10 |
|
xrex |
|- RR* e. _V |
11 |
10
|
pwex |
|- ~P RR* e. _V |
12 |
|
eqid |
|- ( x e. RR* |-> ( x (,] +oo ) ) = ( x e. RR* |-> ( x (,] +oo ) ) |
13 |
|
iocssxr |
|- ( x (,] +oo ) C_ RR* |
14 |
10 13
|
elpwi2 |
|- ( x (,] +oo ) e. ~P RR* |
15 |
14
|
a1i |
|- ( x e. RR* -> ( x (,] +oo ) e. ~P RR* ) |
16 |
12 15
|
fmpti |
|- ( x e. RR* |-> ( x (,] +oo ) ) : RR* --> ~P RR* |
17 |
|
frn |
|- ( ( x e. RR* |-> ( x (,] +oo ) ) : RR* --> ~P RR* -> ran ( x e. RR* |-> ( x (,] +oo ) ) C_ ~P RR* ) |
18 |
16 17
|
ax-mp |
|- ran ( x e. RR* |-> ( x (,] +oo ) ) C_ ~P RR* |
19 |
1 18
|
eqsstri |
|- A C_ ~P RR* |
20 |
|
eqid |
|- ( x e. RR* |-> ( -oo [,) x ) ) = ( x e. RR* |-> ( -oo [,) x ) ) |
21 |
|
icossxr |
|- ( -oo [,) x ) C_ RR* |
22 |
10 21
|
elpwi2 |
|- ( -oo [,) x ) e. ~P RR* |
23 |
22
|
a1i |
|- ( x e. RR* -> ( -oo [,) x ) e. ~P RR* ) |
24 |
20 23
|
fmpti |
|- ( x e. RR* |-> ( -oo [,) x ) ) : RR* --> ~P RR* |
25 |
|
frn |
|- ( ( x e. RR* |-> ( -oo [,) x ) ) : RR* --> ~P RR* -> ran ( x e. RR* |-> ( -oo [,) x ) ) C_ ~P RR* ) |
26 |
24 25
|
ax-mp |
|- ran ( x e. RR* |-> ( -oo [,) x ) ) C_ ~P RR* |
27 |
2 26
|
eqsstri |
|- B C_ ~P RR* |
28 |
19 27
|
unssi |
|- ( A u. B ) C_ ~P RR* |
29 |
11 28
|
ssexi |
|- ( A u. B ) e. _V |
30 |
9 29
|
unex |
|- ( { RR* } u. ( A u. B ) ) e. _V |
31 |
|
ssun2 |
|- ( A u. B ) C_ ( { RR* } u. ( A u. B ) ) |
32 |
|
fiss |
|- ( ( ( { RR* } u. ( A u. B ) ) e. _V /\ ( A u. B ) C_ ( { RR* } u. ( A u. B ) ) ) -> ( fi ` ( A u. B ) ) C_ ( fi ` ( { RR* } u. ( A u. B ) ) ) ) |
33 |
30 31 32
|
mp2an |
|- ( fi ` ( A u. B ) ) C_ ( fi ` ( { RR* } u. ( A u. B ) ) ) |
34 |
|
fvex |
|- ( topGen ` ( fi ` ( A u. B ) ) ) e. _V |
35 |
|
ovex |
|- ( 0 (,] +oo ) e. _V |
36 |
|
ovex |
|- ( -oo [,) 1 ) e. _V |
37 |
35 36
|
unipr |
|- U. { ( 0 (,] +oo ) , ( -oo [,) 1 ) } = ( ( 0 (,] +oo ) u. ( -oo [,) 1 ) ) |
38 |
|
iocssxr |
|- ( 0 (,] +oo ) C_ RR* |
39 |
|
icossxr |
|- ( -oo [,) 1 ) C_ RR* |
40 |
38 39
|
unssi |
|- ( ( 0 (,] +oo ) u. ( -oo [,) 1 ) ) C_ RR* |
41 |
|
mnfxr |
|- -oo e. RR* |
42 |
|
0xr |
|- 0 e. RR* |
43 |
|
pnfxr |
|- +oo e. RR* |
44 |
|
mnflt0 |
|- -oo < 0 |
45 |
|
0lepnf |
|- 0 <_ +oo |
46 |
|
df-icc |
|- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
47 |
|
df-ioc |
|- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
48 |
|
xrltnle |
|- ( ( 0 e. RR* /\ w e. RR* ) -> ( 0 < w <-> -. w <_ 0 ) ) |
49 |
|
xrletr |
|- ( ( w e. RR* /\ 0 e. RR* /\ +oo e. RR* ) -> ( ( w <_ 0 /\ 0 <_ +oo ) -> w <_ +oo ) ) |
50 |
|
xrlttr |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ w e. RR* ) -> ( ( -oo < 0 /\ 0 < w ) -> -oo < w ) ) |
51 |
|
xrltle |
|- ( ( -oo e. RR* /\ w e. RR* ) -> ( -oo < w -> -oo <_ w ) ) |
52 |
51
|
3adant2 |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ w e. RR* ) -> ( -oo < w -> -oo <_ w ) ) |
53 |
50 52
|
syld |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ w e. RR* ) -> ( ( -oo < 0 /\ 0 < w ) -> -oo <_ w ) ) |
54 |
46 47 48 46 49 53
|
ixxun |
|- ( ( ( -oo e. RR* /\ 0 e. RR* /\ +oo e. RR* ) /\ ( -oo < 0 /\ 0 <_ +oo ) ) -> ( ( -oo [,] 0 ) u. ( 0 (,] +oo ) ) = ( -oo [,] +oo ) ) |
55 |
44 45 54
|
mpanr12 |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ +oo e. RR* ) -> ( ( -oo [,] 0 ) u. ( 0 (,] +oo ) ) = ( -oo [,] +oo ) ) |
56 |
41 42 43 55
|
mp3an |
|- ( ( -oo [,] 0 ) u. ( 0 (,] +oo ) ) = ( -oo [,] +oo ) |
57 |
|
1xr |
|- 1 e. RR* |
58 |
|
0lt1 |
|- 0 < 1 |
59 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
60 |
|
xrlelttr |
|- ( ( w e. RR* /\ 0 e. RR* /\ 1 e. RR* ) -> ( ( w <_ 0 /\ 0 < 1 ) -> w < 1 ) ) |
61 |
59 46 60
|
ixxss2 |
|- ( ( 1 e. RR* /\ 0 < 1 ) -> ( -oo [,] 0 ) C_ ( -oo [,) 1 ) ) |
62 |
57 58 61
|
mp2an |
|- ( -oo [,] 0 ) C_ ( -oo [,) 1 ) |
63 |
|
unss1 |
|- ( ( -oo [,] 0 ) C_ ( -oo [,) 1 ) -> ( ( -oo [,] 0 ) u. ( 0 (,] +oo ) ) C_ ( ( -oo [,) 1 ) u. ( 0 (,] +oo ) ) ) |
64 |
62 63
|
ax-mp |
|- ( ( -oo [,] 0 ) u. ( 0 (,] +oo ) ) C_ ( ( -oo [,) 1 ) u. ( 0 (,] +oo ) ) |
65 |
56 64
|
eqsstrri |
|- ( -oo [,] +oo ) C_ ( ( -oo [,) 1 ) u. ( 0 (,] +oo ) ) |
66 |
|
iccmax |
|- ( -oo [,] +oo ) = RR* |
67 |
|
uncom |
|- ( ( -oo [,) 1 ) u. ( 0 (,] +oo ) ) = ( ( 0 (,] +oo ) u. ( -oo [,) 1 ) ) |
68 |
65 66 67
|
3sstr3i |
|- RR* C_ ( ( 0 (,] +oo ) u. ( -oo [,) 1 ) ) |
69 |
40 68
|
eqssi |
|- ( ( 0 (,] +oo ) u. ( -oo [,) 1 ) ) = RR* |
70 |
37 69
|
eqtri |
|- U. { ( 0 (,] +oo ) , ( -oo [,) 1 ) } = RR* |
71 |
|
fvex |
|- ( fi ` ( A u. B ) ) e. _V |
72 |
|
ssun1 |
|- A C_ ( A u. B ) |
73 |
|
eqid |
|- ( 0 (,] +oo ) = ( 0 (,] +oo ) |
74 |
|
oveq1 |
|- ( x = 0 -> ( x (,] +oo ) = ( 0 (,] +oo ) ) |
75 |
74
|
rspceeqv |
|- ( ( 0 e. RR* /\ ( 0 (,] +oo ) = ( 0 (,] +oo ) ) -> E. x e. RR* ( 0 (,] +oo ) = ( x (,] +oo ) ) |
76 |
42 73 75
|
mp2an |
|- E. x e. RR* ( 0 (,] +oo ) = ( x (,] +oo ) |
77 |
|
ovex |
|- ( x (,] +oo ) e. _V |
78 |
12 77
|
elrnmpti |
|- ( ( 0 (,] +oo ) e. ran ( x e. RR* |-> ( x (,] +oo ) ) <-> E. x e. RR* ( 0 (,] +oo ) = ( x (,] +oo ) ) |
79 |
76 78
|
mpbir |
|- ( 0 (,] +oo ) e. ran ( x e. RR* |-> ( x (,] +oo ) ) |
80 |
79 1
|
eleqtrri |
|- ( 0 (,] +oo ) e. A |
81 |
72 80
|
sselii |
|- ( 0 (,] +oo ) e. ( A u. B ) |
82 |
|
ssun2 |
|- B C_ ( A u. B ) |
83 |
|
eqid |
|- ( -oo [,) 1 ) = ( -oo [,) 1 ) |
84 |
|
oveq2 |
|- ( x = 1 -> ( -oo [,) x ) = ( -oo [,) 1 ) ) |
85 |
84
|
rspceeqv |
|- ( ( 1 e. RR* /\ ( -oo [,) 1 ) = ( -oo [,) 1 ) ) -> E. x e. RR* ( -oo [,) 1 ) = ( -oo [,) x ) ) |
86 |
57 83 85
|
mp2an |
|- E. x e. RR* ( -oo [,) 1 ) = ( -oo [,) x ) |
87 |
|
ovex |
|- ( -oo [,) x ) e. _V |
88 |
20 87
|
elrnmpti |
|- ( ( -oo [,) 1 ) e. ran ( x e. RR* |-> ( -oo [,) x ) ) <-> E. x e. RR* ( -oo [,) 1 ) = ( -oo [,) x ) ) |
89 |
86 88
|
mpbir |
|- ( -oo [,) 1 ) e. ran ( x e. RR* |-> ( -oo [,) x ) ) |
90 |
89 2
|
eleqtrri |
|- ( -oo [,) 1 ) e. B |
91 |
82 90
|
sselii |
|- ( -oo [,) 1 ) e. ( A u. B ) |
92 |
|
prssi |
|- ( ( ( 0 (,] +oo ) e. ( A u. B ) /\ ( -oo [,) 1 ) e. ( A u. B ) ) -> { ( 0 (,] +oo ) , ( -oo [,) 1 ) } C_ ( A u. B ) ) |
93 |
81 91 92
|
mp2an |
|- { ( 0 (,] +oo ) , ( -oo [,) 1 ) } C_ ( A u. B ) |
94 |
|
ssfii |
|- ( ( A u. B ) e. _V -> ( A u. B ) C_ ( fi ` ( A u. B ) ) ) |
95 |
29 94
|
ax-mp |
|- ( A u. B ) C_ ( fi ` ( A u. B ) ) |
96 |
93 95
|
sstri |
|- { ( 0 (,] +oo ) , ( -oo [,) 1 ) } C_ ( fi ` ( A u. B ) ) |
97 |
|
eltg3i |
|- ( ( ( fi ` ( A u. B ) ) e. _V /\ { ( 0 (,] +oo ) , ( -oo [,) 1 ) } C_ ( fi ` ( A u. B ) ) ) -> U. { ( 0 (,] +oo ) , ( -oo [,) 1 ) } e. ( topGen ` ( fi ` ( A u. B ) ) ) ) |
98 |
71 96 97
|
mp2an |
|- U. { ( 0 (,] +oo ) , ( -oo [,) 1 ) } e. ( topGen ` ( fi ` ( A u. B ) ) ) |
99 |
70 98
|
eqeltrri |
|- RR* e. ( topGen ` ( fi ` ( A u. B ) ) ) |
100 |
|
snssi |
|- ( RR* e. ( topGen ` ( fi ` ( A u. B ) ) ) -> { RR* } C_ ( topGen ` ( fi ` ( A u. B ) ) ) ) |
101 |
99 100
|
ax-mp |
|- { RR* } C_ ( topGen ` ( fi ` ( A u. B ) ) ) |
102 |
|
bastg |
|- ( ( fi ` ( A u. B ) ) e. _V -> ( fi ` ( A u. B ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) ) |
103 |
71 102
|
ax-mp |
|- ( fi ` ( A u. B ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) |
104 |
95 103
|
sstri |
|- ( A u. B ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) |
105 |
101 104
|
unssi |
|- ( { RR* } u. ( A u. B ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) |
106 |
|
fiss |
|- ( ( ( topGen ` ( fi ` ( A u. B ) ) ) e. _V /\ ( { RR* } u. ( A u. B ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) ) -> ( fi ` ( { RR* } u. ( A u. B ) ) ) C_ ( fi ` ( topGen ` ( fi ` ( A u. B ) ) ) ) ) |
107 |
34 105 106
|
mp2an |
|- ( fi ` ( { RR* } u. ( A u. B ) ) ) C_ ( fi ` ( topGen ` ( fi ` ( A u. B ) ) ) ) |
108 |
|
fibas |
|- ( fi ` ( A u. B ) ) e. TopBases |
109 |
|
tgcl |
|- ( ( fi ` ( A u. B ) ) e. TopBases -> ( topGen ` ( fi ` ( A u. B ) ) ) e. Top ) |
110 |
|
fitop |
|- ( ( topGen ` ( fi ` ( A u. B ) ) ) e. Top -> ( fi ` ( topGen ` ( fi ` ( A u. B ) ) ) ) = ( topGen ` ( fi ` ( A u. B ) ) ) ) |
111 |
108 109 110
|
mp2b |
|- ( fi ` ( topGen ` ( fi ` ( A u. B ) ) ) ) = ( topGen ` ( fi ` ( A u. B ) ) ) |
112 |
107 111
|
sseqtri |
|- ( fi ` ( { RR* } u. ( A u. B ) ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) |
113 |
|
2basgen |
|- ( ( ( fi ` ( A u. B ) ) C_ ( fi ` ( { RR* } u. ( A u. B ) ) ) /\ ( fi ` ( { RR* } u. ( A u. B ) ) ) C_ ( topGen ` ( fi ` ( A u. B ) ) ) ) -> ( topGen ` ( fi ` ( A u. B ) ) ) = ( topGen ` ( fi ` ( { RR* } u. ( A u. B ) ) ) ) ) |
114 |
33 112 113
|
mp2an |
|- ( topGen ` ( fi ` ( A u. B ) ) ) = ( topGen ` ( fi ` ( { RR* } u. ( A u. B ) ) ) ) |
115 |
8 114
|
eqtr4i |
|- ( ordTop ` <_ ) = ( topGen ` ( fi ` ( A u. B ) ) ) |