Step |
Hyp |
Ref |
Expression |
1 |
|
ltrec |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( B < A <-> ( 1 / A ) < ( 1 / B ) ) ) |
2 |
1
|
ancoms |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( B < A <-> ( 1 / A ) < ( 1 / B ) ) ) |
3 |
2
|
notbid |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( -. B < A <-> -. ( 1 / A ) < ( 1 / B ) ) ) |
4 |
|
simpll |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> A e. RR ) |
5 |
|
simprl |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> B e. RR ) |
6 |
4 5
|
lenltd |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ B <-> -. B < A ) ) |
7 |
|
simprr |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < B ) |
8 |
7
|
gt0ne0d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> B =/= 0 ) |
9 |
5 8
|
rereccld |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 / B ) e. RR ) |
10 |
|
simplr |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < A ) |
11 |
10
|
gt0ne0d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> A =/= 0 ) |
12 |
4 11
|
rereccld |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 / A ) e. RR ) |
13 |
9 12
|
lenltd |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / B ) <_ ( 1 / A ) <-> -. ( 1 / A ) < ( 1 / B ) ) ) |
14 |
3 6 13
|
3bitr4d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |