Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| rpaddcld.1 | |- ( ph -> B e. RR+ ) |
||
| lerec2d.2 | |- ( ph -> A <_ ( 1 / B ) ) |
||
| Assertion | lerec2d | |- ( ph -> B <_ ( 1 / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | rpaddcld.1 | |- ( ph -> B e. RR+ ) |
|
| 3 | lerec2d.2 | |- ( ph -> A <_ ( 1 / B ) ) |
|
| 4 | 1 | rpregt0d | |- ( ph -> ( A e. RR /\ 0 < A ) ) |
| 5 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) |
| 6 | lerec2 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ ( 1 / B ) <-> B <_ ( 1 / A ) ) ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ph -> ( A <_ ( 1 / B ) <-> B <_ ( 1 / A ) ) ) |
| 8 | 3 7 | mpbid | |- ( ph -> B <_ ( 1 / A ) ) |