Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| rpaddcld.1 | |- ( ph -> B e. RR+ ) |
||
| Assertion | lerecd | |- ( ph -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | rpaddcld.1 | |- ( ph -> B e. RR+ ) |
|
| 3 | 1 | rpregt0d | |- ( ph -> ( A e. RR /\ 0 < A ) ) |
| 4 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) |
| 5 | lerec | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ph -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |