Metamath Proof Explorer


Theorem lereci

Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 16-Sep-1999)

Ref Expression
Hypotheses ltplus1.1
|- A e. RR
prodgt0.2
|- B e. RR
Assertion lereci
|- ( ( 0 < A /\ 0 < B ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1
 |-  A e. RR
2 prodgt0.2
 |-  B e. RR
3 lerec
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) )
4 2 3 mpanr1
 |-  ( ( ( A e. RR /\ 0 < A ) /\ 0 < B ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) )
5 1 4 mpanl1
 |-  ( ( 0 < A /\ 0 < B ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) )