Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( a = b -> ( A rmX a ) = ( A rmX b ) ) |
2 |
|
oveq2 |
|- ( a = M -> ( A rmX a ) = ( A rmX M ) ) |
3 |
|
oveq2 |
|- ( a = N -> ( A rmX a ) = ( A rmX N ) ) |
4 |
|
nn0ssre |
|- NN0 C_ RR |
5 |
|
nn0z |
|- ( a e. NN0 -> a e. ZZ ) |
6 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
7 |
6
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmX a ) e. NN0 ) |
8 |
5 7
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmX a ) e. NN0 ) |
9 |
8
|
nn0red |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmX a ) e. RR ) |
10 |
|
ltrmxnn0 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 /\ b e. NN0 ) -> ( a < b <-> ( A rmX a ) < ( A rmX b ) ) ) |
11 |
10
|
biimpd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 /\ b e. NN0 ) -> ( a < b -> ( A rmX a ) < ( A rmX b ) ) ) |
12 |
11
|
3expb |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( a < b -> ( A rmX a ) < ( A rmX b ) ) ) |
13 |
1 2 3 4 9 12
|
leord1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M <_ N <-> ( A rmX M ) <_ ( A rmX N ) ) ) |
14 |
13
|
3impb |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( A rmX M ) <_ ( A rmX N ) ) ) |