| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( a = b -> ( A rmY a ) = ( A rmY b ) ) | 
						
							| 2 |  | oveq2 |  |-  ( a = M -> ( A rmY a ) = ( A rmY M ) ) | 
						
							| 3 |  | oveq2 |  |-  ( a = N -> ( A rmY a ) = ( A rmY N ) ) | 
						
							| 4 |  | zssre |  |-  ZZ C_ RR | 
						
							| 5 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 6 | 5 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. ZZ ) | 
						
							| 7 | 6 | zred |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. RR ) | 
						
							| 8 |  | ltrmy |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ b e. ZZ ) -> ( a < b <-> ( A rmY a ) < ( A rmY b ) ) ) | 
						
							| 9 | 8 | biimpd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ b e. ZZ ) -> ( a < b -> ( A rmY a ) < ( A rmY b ) ) ) | 
						
							| 10 | 9 | 3expb |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a < b -> ( A rmY a ) < ( A rmY b ) ) ) | 
						
							| 11 | 1 2 3 4 7 10 | leord1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M <_ N <-> ( A rmY M ) <_ ( A rmY N ) ) ) | 
						
							| 12 | 11 | 3impb |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( A rmY M ) <_ ( A rmY N ) ) ) |