Description: Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lesub | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ ( B - C ) <-> C <_ ( B - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leaddsub | |- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( ( A + C ) <_ B <-> A <_ ( B - C ) ) ) |
|
| 2 | leaddsub2 | |- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( ( A + C ) <_ B <-> C <_ ( B - A ) ) ) |
|
| 3 | 1 2 | bitr3d | |- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( A <_ ( B - C ) <-> C <_ ( B - A ) ) ) |
| 4 | 3 | 3com23 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ ( B - C ) <-> C <_ ( B - A ) ) ) |