Metamath Proof Explorer


Theorem lesubaddi

Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 30-Sep-1999) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Hypotheses lt2.1
|- A e. RR
lt2.2
|- B e. RR
lt2.3
|- C e. RR
Assertion lesubaddi
|- ( ( A - B ) <_ C <-> A <_ ( C + B ) )

Proof

Step Hyp Ref Expression
1 lt2.1
 |-  A e. RR
2 lt2.2
 |-  B e. RR
3 lt2.3
 |-  C e. RR
4 lesubadd
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> A <_ ( C + B ) ) )
5 1 2 3 4 mp3an
 |-  ( ( A - B ) <_ C <-> A <_ ( C + B ) )