Description: Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
| ltnegd.2 | |- ( ph -> B e. RR ) |
||
| ltadd1d.3 | |- ( ph -> C e. RR ) |
||
| lesubd.4 | |- ( ph -> A <_ ( B - C ) ) |
||
| Assertion | lesubd | |- ( ph -> C <_ ( B - A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
| 3 | ltadd1d.3 | |- ( ph -> C e. RR ) |
|
| 4 | lesubd.4 | |- ( ph -> A <_ ( B - C ) ) |
|
| 5 | lesub | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ ( B - C ) <-> C <_ ( B - A ) ) ) |
|
| 6 | 1 2 3 5 | syl3anc | |- ( ph -> ( A <_ ( B - C ) <-> C <_ ( B - A ) ) ) |
| 7 | 4 6 | mpbid | |- ( ph -> C <_ ( B - A ) ) |