Step |
Hyp |
Ref |
Expression |
1 |
|
leloe |
|- ( ( B e. RR /\ C e. RR ) -> ( B <_ C <-> ( B < C \/ B = C ) ) ) |
2 |
1
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ C <-> ( B < C \/ B = C ) ) ) |
3 |
2
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ A <_ B ) -> ( B <_ C <-> ( B < C \/ B = C ) ) ) |
4 |
|
lelttr |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A < C ) ) |
5 |
|
ltle |
|- ( ( A e. RR /\ C e. RR ) -> ( A < C -> A <_ C ) ) |
6 |
5
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < C -> A <_ C ) ) |
7 |
4 6
|
syld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A <_ C ) ) |
8 |
7
|
expdimp |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ A <_ B ) -> ( B < C -> A <_ C ) ) |
9 |
|
breq2 |
|- ( B = C -> ( A <_ B <-> A <_ C ) ) |
10 |
9
|
biimpcd |
|- ( A <_ B -> ( B = C -> A <_ C ) ) |
11 |
10
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ A <_ B ) -> ( B = C -> A <_ C ) ) |
12 |
8 11
|
jaod |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ A <_ B ) -> ( ( B < C \/ B = C ) -> A <_ C ) ) |
13 |
3 12
|
sylbid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ A <_ B ) -> ( B <_ C -> A <_ C ) ) |
14 |
13
|
expimpd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B <_ C ) -> A <_ C ) ) |