Metamath Proof Explorer


Theorem letrd

Description: Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ltd.2
|- ( ph -> B e. RR )
letrd.3
|- ( ph -> C e. RR )
letrd.4
|- ( ph -> A <_ B )
letrd.5
|- ( ph -> B <_ C )
Assertion letrd
|- ( ph -> A <_ C )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ltd.2
 |-  ( ph -> B e. RR )
3 letrd.3
 |-  ( ph -> C e. RR )
4 letrd.4
 |-  ( ph -> A <_ B )
5 letrd.5
 |-  ( ph -> B <_ C )
6 letr
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B <_ C ) -> A <_ C ) )
7 1 2 3 6 syl3anc
 |-  ( ph -> ( ( A <_ B /\ B <_ C ) -> A <_ C ) )
8 4 5 7 mp2and
 |-  ( ph -> A <_ C )