Step |
Hyp |
Ref |
Expression |
1 |
|
lttri3 |
|- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
2 |
1
|
biancomd |
|- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( -. B < A /\ -. A < B ) ) ) |
3 |
|
lenlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
4 |
|
lenlt |
|- ( ( B e. RR /\ A e. RR ) -> ( B <_ A <-> -. A < B ) ) |
5 |
4
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B <_ A <-> -. A < B ) ) |
6 |
3 5
|
anbi12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A <_ B /\ B <_ A ) <-> ( -. B < A /\ -. A < B ) ) ) |
7 |
2 6
|
bitr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |