Metamath Proof Explorer


Theorem letrii

Description: Trichotomy law for 'less than or equal to'. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypotheses lt.1
|- A e. RR
lt.2
|- B e. RR
Assertion letrii
|- ( A <_ B \/ B <_ A )

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 lt.2
 |-  B e. RR
3 2 1 ltnlei
 |-  ( B < A <-> -. A <_ B )
4 2 1 ltlei
 |-  ( B < A -> B <_ A )
5 3 4 sylbir
 |-  ( -. A <_ B -> B <_ A )
6 5 orri
 |-  ( A <_ B \/ B <_ A )