Step |
Hyp |
Ref |
Expression |
1 |
|
ltp1 |
|- ( B e. RR -> B < ( B + 1 ) ) |
2 |
1
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> B < ( B + 1 ) ) |
3 |
|
peano2re |
|- ( B e. RR -> ( B + 1 ) e. RR ) |
4 |
3
|
ancli |
|- ( B e. RR -> ( B e. RR /\ ( B + 1 ) e. RR ) ) |
5 |
|
lelttr |
|- ( ( A e. RR /\ B e. RR /\ ( B + 1 ) e. RR ) -> ( ( A <_ B /\ B < ( B + 1 ) ) -> A < ( B + 1 ) ) ) |
6 |
5
|
3expb |
|- ( ( A e. RR /\ ( B e. RR /\ ( B + 1 ) e. RR ) ) -> ( ( A <_ B /\ B < ( B + 1 ) ) -> A < ( B + 1 ) ) ) |
7 |
4 6
|
sylan2 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A <_ B /\ B < ( B + 1 ) ) -> A < ( B + 1 ) ) ) |
8 |
2 7
|
mpan2d |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> A < ( B + 1 ) ) ) |
9 |
8
|
3impia |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A < ( B + 1 ) ) |
10 |
|
ltle |
|- ( ( A e. RR /\ ( B + 1 ) e. RR ) -> ( A < ( B + 1 ) -> A <_ ( B + 1 ) ) ) |
11 |
3 10
|
sylan2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A < ( B + 1 ) -> A <_ ( B + 1 ) ) ) |
12 |
11
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A < ( B + 1 ) -> A <_ ( B + 1 ) ) ) |
13 |
9 12
|
mpd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ ( B + 1 ) ) |