Step |
Hyp |
Ref |
Expression |
1 |
|
lfgrn1cycl.v |
|- V = ( Vtx ` G ) |
2 |
|
lfgrn1cycl.i |
|- I = ( iEdg ` G ) |
3 |
|
cyclprop |
|- ( F ( Cycles ` G ) P -> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
4 |
|
cycliswlk |
|- ( F ( Cycles ` G ) P -> F ( Walks ` G ) P ) |
5 |
2 1
|
lfgrwlknloop |
|- ( ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
6 |
|
1nn |
|- 1 e. NN |
7 |
|
eleq1 |
|- ( ( # ` F ) = 1 -> ( ( # ` F ) e. NN <-> 1 e. NN ) ) |
8 |
6 7
|
mpbiri |
|- ( ( # ` F ) = 1 -> ( # ` F ) e. NN ) |
9 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. NN ) |
10 |
8 9
|
sylibr |
|- ( ( # ` F ) = 1 -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
11 |
|
fveq2 |
|- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
12 |
|
fv0p1e1 |
|- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
13 |
11 12
|
neeq12d |
|- ( k = 0 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
14 |
13
|
rspcv |
|- ( 0 e. ( 0 ..^ ( # ` F ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
15 |
10 14
|
syl |
|- ( ( # ` F ) = 1 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
16 |
15
|
impcom |
|- ( ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) /\ ( # ` F ) = 1 ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
17 |
|
fveq2 |
|- ( ( # ` F ) = 1 -> ( P ` ( # ` F ) ) = ( P ` 1 ) ) |
18 |
17
|
neeq2d |
|- ( ( # ` F ) = 1 -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
19 |
18
|
adantl |
|- ( ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) /\ ( # ` F ) = 1 ) -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
20 |
16 19
|
mpbird |
|- ( ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) /\ ( # ` F ) = 1 ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) |
21 |
20
|
ex |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( ( # ` F ) = 1 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
22 |
21
|
necon2d |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( # ` F ) =/= 1 ) ) |
23 |
5 22
|
syl |
|- ( ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } /\ F ( Walks ` G ) P ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( # ` F ) =/= 1 ) ) |
24 |
23
|
ex |
|- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( F ( Walks ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( # ` F ) =/= 1 ) ) ) |
25 |
24
|
com13 |
|- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( # ` F ) =/= 1 ) ) ) |
26 |
25
|
adantl |
|- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( # ` F ) =/= 1 ) ) ) |
27 |
3 4 26
|
sylc |
|- ( F ( Cycles ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( # ` F ) =/= 1 ) ) |
28 |
27
|
com12 |
|- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( F ( Cycles ` G ) P -> ( # ` F ) =/= 1 ) ) |