Step |
Hyp |
Ref |
Expression |
1 |
|
lfuhgrnloopv.i |
|- I = ( iEdg ` G ) |
2 |
|
lfuhgrnloopv.a |
|- A = dom I |
3 |
|
lfuhgrnloopv.e |
|- E = { x e. ~P V | 2 <_ ( # ` x ) } |
4 |
|
nfcv |
|- F/_ x I |
5 |
|
nfcv |
|- F/_ x A |
6 |
|
nfrab1 |
|- F/_ x { x e. ~P V | 2 <_ ( # ` x ) } |
7 |
3 6
|
nfcxfr |
|- F/_ x E |
8 |
4 5 7
|
nff |
|- F/ x I : A --> E |
9 |
|
hashsn01 |
|- ( ( # ` { U } ) = 0 \/ ( # ` { U } ) = 1 ) |
10 |
|
2pos |
|- 0 < 2 |
11 |
|
0re |
|- 0 e. RR |
12 |
|
2re |
|- 2 e. RR |
13 |
11 12
|
ltnlei |
|- ( 0 < 2 <-> -. 2 <_ 0 ) |
14 |
10 13
|
mpbi |
|- -. 2 <_ 0 |
15 |
|
breq2 |
|- ( ( # ` { U } ) = 0 -> ( 2 <_ ( # ` { U } ) <-> 2 <_ 0 ) ) |
16 |
14 15
|
mtbiri |
|- ( ( # ` { U } ) = 0 -> -. 2 <_ ( # ` { U } ) ) |
17 |
|
1lt2 |
|- 1 < 2 |
18 |
|
1re |
|- 1 e. RR |
19 |
18 12
|
ltnlei |
|- ( 1 < 2 <-> -. 2 <_ 1 ) |
20 |
17 19
|
mpbi |
|- -. 2 <_ 1 |
21 |
|
breq2 |
|- ( ( # ` { U } ) = 1 -> ( 2 <_ ( # ` { U } ) <-> 2 <_ 1 ) ) |
22 |
20 21
|
mtbiri |
|- ( ( # ` { U } ) = 1 -> -. 2 <_ ( # ` { U } ) ) |
23 |
16 22
|
jaoi |
|- ( ( ( # ` { U } ) = 0 \/ ( # ` { U } ) = 1 ) -> -. 2 <_ ( # ` { U } ) ) |
24 |
9 23
|
ax-mp |
|- -. 2 <_ ( # ` { U } ) |
25 |
|
fveq2 |
|- ( ( I ` x ) = { U } -> ( # ` ( I ` x ) ) = ( # ` { U } ) ) |
26 |
25
|
breq2d |
|- ( ( I ` x ) = { U } -> ( 2 <_ ( # ` ( I ` x ) ) <-> 2 <_ ( # ` { U } ) ) ) |
27 |
24 26
|
mtbiri |
|- ( ( I ` x ) = { U } -> -. 2 <_ ( # ` ( I ` x ) ) ) |
28 |
1 2 3
|
lfgredgge2 |
|- ( ( I : A --> E /\ x e. A ) -> 2 <_ ( # ` ( I ` x ) ) ) |
29 |
27 28
|
nsyl3 |
|- ( ( I : A --> E /\ x e. A ) -> -. ( I ` x ) = { U } ) |
30 |
29
|
ex |
|- ( I : A --> E -> ( x e. A -> -. ( I ` x ) = { U } ) ) |
31 |
8 30
|
ralrimi |
|- ( I : A --> E -> A. x e. A -. ( I ` x ) = { U } ) |
32 |
|
rabeq0 |
|- ( { x e. A | ( I ` x ) = { U } } = (/) <-> A. x e. A -. ( I ` x ) = { U } ) |
33 |
31 32
|
sylibr |
|- ( I : A --> E -> { x e. A | ( I ` x ) = { U } } = (/) ) |