Step |
Hyp |
Ref |
Expression |
1 |
|
lgscl |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. ZZ ) |
2 |
1
|
zcnd |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. CC ) |
3 |
2
|
abscld |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( abs ` ( A /L N ) ) e. RR ) |
4 |
|
1re |
|- 1 e. RR |
5 |
|
letri3 |
|- ( ( ( abs ` ( A /L N ) ) e. RR /\ 1 e. RR ) -> ( ( abs ` ( A /L N ) ) = 1 <-> ( ( abs ` ( A /L N ) ) <_ 1 /\ 1 <_ ( abs ` ( A /L N ) ) ) ) ) |
6 |
3 4 5
|
sylancl |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) = 1 <-> ( ( abs ` ( A /L N ) ) <_ 1 /\ 1 <_ ( abs ` ( A /L N ) ) ) ) ) |
7 |
|
lgsle1 |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( abs ` ( A /L N ) ) <_ 1 ) |
8 |
7
|
biantrurd |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( 1 <_ ( abs ` ( A /L N ) ) <-> ( ( abs ` ( A /L N ) ) <_ 1 /\ 1 <_ ( abs ` ( A /L N ) ) ) ) ) |
9 |
|
nnne0 |
|- ( ( abs ` ( A /L N ) ) e. NN -> ( abs ` ( A /L N ) ) =/= 0 ) |
10 |
|
nn0abscl |
|- ( ( A /L N ) e. ZZ -> ( abs ` ( A /L N ) ) e. NN0 ) |
11 |
1 10
|
syl |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( abs ` ( A /L N ) ) e. NN0 ) |
12 |
|
elnn0 |
|- ( ( abs ` ( A /L N ) ) e. NN0 <-> ( ( abs ` ( A /L N ) ) e. NN \/ ( abs ` ( A /L N ) ) = 0 ) ) |
13 |
11 12
|
sylib |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) e. NN \/ ( abs ` ( A /L N ) ) = 0 ) ) |
14 |
13
|
ord |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( -. ( abs ` ( A /L N ) ) e. NN -> ( abs ` ( A /L N ) ) = 0 ) ) |
15 |
14
|
necon1ad |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) =/= 0 -> ( abs ` ( A /L N ) ) e. NN ) ) |
16 |
9 15
|
impbid2 |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) e. NN <-> ( abs ` ( A /L N ) ) =/= 0 ) ) |
17 |
|
elnnnn0c |
|- ( ( abs ` ( A /L N ) ) e. NN <-> ( ( abs ` ( A /L N ) ) e. NN0 /\ 1 <_ ( abs ` ( A /L N ) ) ) ) |
18 |
17
|
baib |
|- ( ( abs ` ( A /L N ) ) e. NN0 -> ( ( abs ` ( A /L N ) ) e. NN <-> 1 <_ ( abs ` ( A /L N ) ) ) ) |
19 |
11 18
|
syl |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) e. NN <-> 1 <_ ( abs ` ( A /L N ) ) ) ) |
20 |
|
abs00 |
|- ( ( A /L N ) e. CC -> ( ( abs ` ( A /L N ) ) = 0 <-> ( A /L N ) = 0 ) ) |
21 |
20
|
necon3bid |
|- ( ( A /L N ) e. CC -> ( ( abs ` ( A /L N ) ) =/= 0 <-> ( A /L N ) =/= 0 ) ) |
22 |
2 21
|
syl |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) =/= 0 <-> ( A /L N ) =/= 0 ) ) |
23 |
|
lgsne0 |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( A /L N ) =/= 0 <-> ( A gcd N ) = 1 ) ) |
24 |
22 23
|
bitrd |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) =/= 0 <-> ( A gcd N ) = 1 ) ) |
25 |
16 19 24
|
3bitr3d |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( 1 <_ ( abs ` ( A /L N ) ) <-> ( A gcd N ) = 1 ) ) |
26 |
6 8 25
|
3bitr2d |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) = 1 <-> ( A gcd N ) = 1 ) ) |