| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsval.1 |  |-  F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 2 |  | lgsfcl2.z |  |-  Z = { x e. ZZ | ( abs ` x ) <_ 1 } | 
						
							| 3 | 1 | lgsval |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) = if ( N = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) ) | 
						
							| 4 | 2 | lgslem2 |  |-  ( -u 1 e. Z /\ 0 e. Z /\ 1 e. Z ) | 
						
							| 5 | 4 | simp3i |  |-  1 e. Z | 
						
							| 6 | 4 | simp2i |  |-  0 e. Z | 
						
							| 7 | 5 6 | ifcli |  |-  if ( ( A ^ 2 ) = 1 , 1 , 0 ) e. Z | 
						
							| 8 | 7 | a1i |  |-  ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) e. Z ) | 
						
							| 9 | 4 | simp1i |  |-  -u 1 e. Z | 
						
							| 10 | 9 5 | ifcli |  |-  if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. Z | 
						
							| 11 |  | simplr |  |-  ( ( ( A e. ZZ /\ N e. ZZ ) /\ -. N = 0 ) -> N e. ZZ ) | 
						
							| 12 |  | simpr |  |-  ( ( ( A e. ZZ /\ N e. ZZ ) /\ -. N = 0 ) -> -. N = 0 ) | 
						
							| 13 | 12 | neqned |  |-  ( ( ( A e. ZZ /\ N e. ZZ ) /\ -. N = 0 ) -> N =/= 0 ) | 
						
							| 14 |  | nnabscl |  |-  ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) | 
						
							| 15 | 11 13 14 | syl2anc |  |-  ( ( ( A e. ZZ /\ N e. ZZ ) /\ -. N = 0 ) -> ( abs ` N ) e. NN ) | 
						
							| 16 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 17 | 15 16 | eleqtrdi |  |-  ( ( ( A e. ZZ /\ N e. ZZ ) /\ -. N = 0 ) -> ( abs ` N ) e. ( ZZ>= ` 1 ) ) | 
						
							| 18 |  | df-ne |  |-  ( N =/= 0 <-> -. N = 0 ) | 
						
							| 19 | 1 2 | lgsfcl2 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F : NN --> Z ) | 
						
							| 20 | 19 | 3expa |  |-  ( ( ( A e. ZZ /\ N e. ZZ ) /\ N =/= 0 ) -> F : NN --> Z ) | 
						
							| 21 | 18 20 | sylan2br |  |-  ( ( ( A e. ZZ /\ N e. ZZ ) /\ -. N = 0 ) -> F : NN --> Z ) | 
						
							| 22 |  | elfznn |  |-  ( y e. ( 1 ... ( abs ` N ) ) -> y e. NN ) | 
						
							| 23 |  | ffvelcdm |  |-  ( ( F : NN --> Z /\ y e. NN ) -> ( F ` y ) e. Z ) | 
						
							| 24 | 21 22 23 | syl2an |  |-  ( ( ( ( A e. ZZ /\ N e. ZZ ) /\ -. N = 0 ) /\ y e. ( 1 ... ( abs ` N ) ) ) -> ( F ` y ) e. Z ) | 
						
							| 25 | 2 | lgslem3 |  |-  ( ( y e. Z /\ z e. Z ) -> ( y x. z ) e. Z ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( ( A e. ZZ /\ N e. ZZ ) /\ -. N = 0 ) /\ ( y e. Z /\ z e. Z ) ) -> ( y x. z ) e. Z ) | 
						
							| 27 | 17 24 26 | seqcl |  |-  ( ( ( A e. ZZ /\ N e. ZZ ) /\ -. N = 0 ) -> ( seq 1 ( x. , F ) ` ( abs ` N ) ) e. Z ) | 
						
							| 28 | 2 | lgslem3 |  |-  ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. Z /\ ( seq 1 ( x. , F ) ` ( abs ` N ) ) e. Z ) -> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) e. Z ) | 
						
							| 29 | 10 27 28 | sylancr |  |-  ( ( ( A e. ZZ /\ N e. ZZ ) /\ -. N = 0 ) -> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) e. Z ) | 
						
							| 30 | 8 29 | ifclda |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> if ( N = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) e. Z ) | 
						
							| 31 | 3 30 | eqeltrd |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. Z ) |