| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3anrot |  |-  ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) <-> ( M e. ZZ /\ N e. ZZ /\ A e. ZZ ) ) | 
						
							| 2 |  | lgsdilem |  |-  ( ( ( M e. ZZ /\ N e. ZZ /\ A e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> if ( ( A < 0 /\ ( M x. N ) < 0 ) , -u 1 , 1 ) = ( if ( ( A < 0 /\ M < 0 ) , -u 1 , 1 ) x. if ( ( A < 0 /\ N < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 3 | 1 2 | sylanb |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> if ( ( A < 0 /\ ( M x. N ) < 0 ) , -u 1 , 1 ) = ( if ( ( A < 0 /\ M < 0 ) , -u 1 , 1 ) x. if ( ( A < 0 /\ N < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 4 |  | ancom |  |-  ( ( ( M x. N ) < 0 /\ A < 0 ) <-> ( A < 0 /\ ( M x. N ) < 0 ) ) | 
						
							| 5 |  | ifbi |  |-  ( ( ( ( M x. N ) < 0 /\ A < 0 ) <-> ( A < 0 /\ ( M x. N ) < 0 ) ) -> if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ ( M x. N ) < 0 ) , -u 1 , 1 ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ ( M x. N ) < 0 ) , -u 1 , 1 ) | 
						
							| 7 |  | ancom |  |-  ( ( M < 0 /\ A < 0 ) <-> ( A < 0 /\ M < 0 ) ) | 
						
							| 8 |  | ifbi |  |-  ( ( ( M < 0 /\ A < 0 ) <-> ( A < 0 /\ M < 0 ) ) -> if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ M < 0 ) , -u 1 , 1 ) ) | 
						
							| 9 | 7 8 | ax-mp |  |-  if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ M < 0 ) , -u 1 , 1 ) | 
						
							| 10 |  | ancom |  |-  ( ( N < 0 /\ A < 0 ) <-> ( A < 0 /\ N < 0 ) ) | 
						
							| 11 |  | ifbi |  |-  ( ( ( N < 0 /\ A < 0 ) <-> ( A < 0 /\ N < 0 ) ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ N < 0 ) , -u 1 , 1 ) ) | 
						
							| 12 | 10 11 | ax-mp |  |-  if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ N < 0 ) , -u 1 , 1 ) | 
						
							| 13 | 9 12 | oveq12i |  |-  ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) = ( if ( ( A < 0 /\ M < 0 ) , -u 1 , 1 ) x. if ( ( A < 0 /\ N < 0 ) , -u 1 , 1 ) ) | 
						
							| 14 | 3 6 13 | 3eqtr4g |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) = ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 15 |  | simpl2 |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> M e. ZZ ) | 
						
							| 16 |  | simpl3 |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> N e. ZZ ) | 
						
							| 17 | 15 16 | zmulcld |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( M x. N ) e. ZZ ) | 
						
							| 18 | 15 | zcnd |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> M e. CC ) | 
						
							| 19 | 16 | zcnd |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> N e. CC ) | 
						
							| 20 |  | simprl |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> M =/= 0 ) | 
						
							| 21 |  | simprr |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> N =/= 0 ) | 
						
							| 22 | 18 19 20 21 | mulne0d |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) | 
						
							| 23 |  | nnabscl |  |-  ( ( ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) -> ( abs ` ( M x. N ) ) e. NN ) | 
						
							| 24 | 17 22 23 | syl2anc |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` ( M x. N ) ) e. NN ) | 
						
							| 25 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 26 | 24 25 | eleqtrdi |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` ( M x. N ) ) e. ( ZZ>= ` 1 ) ) | 
						
							| 27 |  | simpl1 |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> A e. ZZ ) | 
						
							| 28 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) | 
						
							| 29 | 28 | lgsfcl3 |  |-  ( ( A e. ZZ /\ M e. ZZ /\ M =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) : NN --> ZZ ) | 
						
							| 30 | 27 15 20 29 | syl3anc |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) : NN --> ZZ ) | 
						
							| 31 |  | elfznn |  |-  ( k e. ( 1 ... ( abs ` ( M x. N ) ) ) -> k e. NN ) | 
						
							| 32 |  | ffvelcdm |  |-  ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) : NN --> ZZ /\ k e. NN ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) e. ZZ ) | 
						
							| 33 | 30 31 32 | syl2an |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) e. ZZ ) | 
						
							| 34 | 33 | zcnd |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) e. CC ) | 
						
							| 35 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 36 | 35 | lgsfcl3 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) | 
						
							| 37 | 27 16 21 36 | syl3anc |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) | 
						
							| 38 |  | ffvelcdm |  |-  ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ /\ k e. NN ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) | 
						
							| 39 | 37 31 38 | syl2an |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) | 
						
							| 40 | 39 | zcnd |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. CC ) | 
						
							| 41 |  | simpr |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> k e. Prime ) | 
						
							| 42 | 15 | ad2antrr |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> M e. ZZ ) | 
						
							| 43 | 20 | ad2antrr |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> M =/= 0 ) | 
						
							| 44 | 16 | ad2antrr |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> N e. ZZ ) | 
						
							| 45 | 21 | ad2antrr |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> N =/= 0 ) | 
						
							| 46 |  | pcmul |  |-  ( ( k e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( k pCnt ( M x. N ) ) = ( ( k pCnt M ) + ( k pCnt N ) ) ) | 
						
							| 47 | 41 42 43 44 45 46 | syl122anc |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt ( M x. N ) ) = ( ( k pCnt M ) + ( k pCnt N ) ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) = ( ( A /L k ) ^ ( ( k pCnt M ) + ( k pCnt N ) ) ) ) | 
						
							| 49 | 27 | ad2antrr |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> A e. ZZ ) | 
						
							| 50 |  | prmz |  |-  ( k e. Prime -> k e. ZZ ) | 
						
							| 51 | 50 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> k e. ZZ ) | 
						
							| 52 |  | lgscl |  |-  ( ( A e. ZZ /\ k e. ZZ ) -> ( A /L k ) e. ZZ ) | 
						
							| 53 | 49 51 52 | syl2anc |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( A /L k ) e. ZZ ) | 
						
							| 54 | 53 | zcnd |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( A /L k ) e. CC ) | 
						
							| 55 |  | pczcl |  |-  ( ( k e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( k pCnt N ) e. NN0 ) | 
						
							| 56 | 41 44 45 55 | syl12anc |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt N ) e. NN0 ) | 
						
							| 57 |  | pczcl |  |-  ( ( k e. Prime /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( k pCnt M ) e. NN0 ) | 
						
							| 58 | 41 42 43 57 | syl12anc |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt M ) e. NN0 ) | 
						
							| 59 | 54 56 58 | expaddd |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( ( k pCnt M ) + ( k pCnt N ) ) ) = ( ( ( A /L k ) ^ ( k pCnt M ) ) x. ( ( A /L k ) ^ ( k pCnt N ) ) ) ) | 
						
							| 60 | 48 59 | eqtrd |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) = ( ( ( A /L k ) ^ ( k pCnt M ) ) x. ( ( A /L k ) ^ ( k pCnt N ) ) ) ) | 
						
							| 61 |  | iftrue |  |-  ( k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) = ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) = ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) ) | 
						
							| 63 |  | iftrue |  |-  ( k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) = ( ( A /L k ) ^ ( k pCnt M ) ) ) | 
						
							| 64 |  | iftrue |  |-  ( k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) = ( ( A /L k ) ^ ( k pCnt N ) ) ) | 
						
							| 65 | 63 64 | oveq12d |  |-  ( k e. Prime -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( ( ( A /L k ) ^ ( k pCnt M ) ) x. ( ( A /L k ) ^ ( k pCnt N ) ) ) ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( ( ( A /L k ) ^ ( k pCnt M ) ) x. ( ( A /L k ) ^ ( k pCnt N ) ) ) ) | 
						
							| 67 | 60 62 66 | 3eqtr4rd |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) | 
						
							| 68 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 69 |  | iffalse |  |-  ( -. k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) = 1 ) | 
						
							| 70 |  | iffalse |  |-  ( -. k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) = 1 ) | 
						
							| 71 | 69 70 | oveq12d |  |-  ( -. k e. Prime -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( 1 x. 1 ) ) | 
						
							| 72 |  | iffalse |  |-  ( -. k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) = 1 ) | 
						
							| 73 | 68 71 72 | 3eqtr4a |  |-  ( -. k e. Prime -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ -. k e. Prime ) -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) | 
						
							| 75 | 67 74 | pm2.61dan |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) | 
						
							| 76 | 31 | adantl |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> k e. NN ) | 
						
							| 77 |  | eleq1w |  |-  ( n = k -> ( n e. Prime <-> k e. Prime ) ) | 
						
							| 78 |  | oveq2 |  |-  ( n = k -> ( A /L n ) = ( A /L k ) ) | 
						
							| 79 |  | oveq1 |  |-  ( n = k -> ( n pCnt M ) = ( k pCnt M ) ) | 
						
							| 80 | 78 79 | oveq12d |  |-  ( n = k -> ( ( A /L n ) ^ ( n pCnt M ) ) = ( ( A /L k ) ^ ( k pCnt M ) ) ) | 
						
							| 81 | 77 80 | ifbieq1d |  |-  ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) ) | 
						
							| 82 |  | ovex |  |-  ( ( A /L k ) ^ ( k pCnt M ) ) e. _V | 
						
							| 83 |  | 1ex |  |-  1 e. _V | 
						
							| 84 | 82 83 | ifex |  |-  if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) e. _V | 
						
							| 85 | 81 28 84 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) ) | 
						
							| 86 |  | oveq1 |  |-  ( n = k -> ( n pCnt N ) = ( k pCnt N ) ) | 
						
							| 87 | 78 86 | oveq12d |  |-  ( n = k -> ( ( A /L n ) ^ ( n pCnt N ) ) = ( ( A /L k ) ^ ( k pCnt N ) ) ) | 
						
							| 88 | 77 87 | ifbieq1d |  |-  ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 89 |  | ovex |  |-  ( ( A /L k ) ^ ( k pCnt N ) ) e. _V | 
						
							| 90 | 89 83 | ifex |  |-  if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) e. _V | 
						
							| 91 | 88 35 90 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 92 | 85 91 | oveq12d |  |-  ( k e. NN -> ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) x. ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) | 
						
							| 93 | 76 92 | syl |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) x. ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) | 
						
							| 94 |  | oveq1 |  |-  ( n = k -> ( n pCnt ( M x. N ) ) = ( k pCnt ( M x. N ) ) ) | 
						
							| 95 | 78 94 | oveq12d |  |-  ( n = k -> ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) = ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) ) | 
						
							| 96 | 77 95 | ifbieq1d |  |-  ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) | 
						
							| 97 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) | 
						
							| 98 |  | ovex |  |-  ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) e. _V | 
						
							| 99 | 98 83 | ifex |  |-  if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) e. _V | 
						
							| 100 | 96 97 99 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) | 
						
							| 101 | 76 100 | syl |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) | 
						
							| 102 | 75 93 101 | 3eqtr4rd |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ` k ) = ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) x. ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) ) ) | 
						
							| 103 | 26 34 40 102 | prodfmul |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) = ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) ) | 
						
							| 104 | 27 15 16 20 21 28 | lgsdilem2 |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) | 
						
							| 105 | 27 16 15 21 20 35 | lgsdilem2 |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( N x. M ) ) ) ) | 
						
							| 106 | 18 19 | mulcomd |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( M x. N ) = ( N x. M ) ) | 
						
							| 107 | 106 | fveq2d |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` ( M x. N ) ) = ( abs ` ( N x. M ) ) ) | 
						
							| 108 | 107 | fveq2d |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( N x. M ) ) ) ) | 
						
							| 109 | 105 108 | eqtr4d |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) | 
						
							| 110 | 104 109 | oveq12d |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) = ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) ) | 
						
							| 111 | 103 110 | eqtr4d |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) = ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 112 | 14 111 | oveq12d |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) = ( ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 113 | 97 | lgsval4 |  |-  ( ( A e. ZZ /\ ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) -> ( A /L ( M x. N ) ) = ( if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) ) | 
						
							| 114 | 27 17 22 113 | syl3anc |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( A /L ( M x. N ) ) = ( if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) ) | 
						
							| 115 | 28 | lgsval4 |  |-  ( ( A e. ZZ /\ M e. ZZ /\ M =/= 0 ) -> ( A /L M ) = ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) ) ) | 
						
							| 116 | 27 15 20 115 | syl3anc |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( A /L M ) = ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) ) ) | 
						
							| 117 | 35 | lgsval4 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 118 | 27 16 21 117 | syl3anc |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 119 | 116 118 | oveq12d |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( ( A /L M ) x. ( A /L N ) ) = ( ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) ) x. ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 120 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 121 |  | ax-1cn |  |-  1 e. CC | 
						
							| 122 | 120 121 | ifcli |  |-  if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC | 
						
							| 123 | 122 | a1i |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC ) | 
						
							| 124 |  | nnabscl |  |-  ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN ) | 
						
							| 125 | 15 20 124 | syl2anc |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` M ) e. NN ) | 
						
							| 126 | 125 25 | eleqtrdi |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` M ) e. ( ZZ>= ` 1 ) ) | 
						
							| 127 |  | elfznn |  |-  ( k e. ( 1 ... ( abs ` M ) ) -> k e. NN ) | 
						
							| 128 | 30 127 32 | syl2an |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` M ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) e. ZZ ) | 
						
							| 129 | 128 | zcnd |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` M ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) e. CC ) | 
						
							| 130 |  | mulcl |  |-  ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) | 
						
							| 131 | 130 | adantl |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) | 
						
							| 132 | 126 129 131 | seqcl |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) e. CC ) | 
						
							| 133 | 120 121 | ifcli |  |-  if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC | 
						
							| 134 | 133 | a1i |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC ) | 
						
							| 135 |  | nnabscl |  |-  ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) | 
						
							| 136 | 16 21 135 | syl2anc |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` N ) e. NN ) | 
						
							| 137 | 136 25 | eleqtrdi |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` N ) e. ( ZZ>= ` 1 ) ) | 
						
							| 138 |  | elfznn |  |-  ( k e. ( 1 ... ( abs ` N ) ) -> k e. NN ) | 
						
							| 139 | 37 138 38 | syl2an |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) | 
						
							| 140 | 139 | zcnd |  |-  ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. CC ) | 
						
							| 141 | 137 140 131 | seqcl |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. CC ) | 
						
							| 142 | 123 132 134 141 | mul4d |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) ) x. ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) = ( ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 143 | 119 142 | eqtrd |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( ( A /L M ) x. ( A /L N ) ) = ( ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 144 | 112 114 143 | 3eqtr4d |  |-  ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( A /L ( M x. N ) ) = ( ( A /L M ) x. ( A /L N ) ) ) |