| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsdilem2.1 |  |-  ( ph -> A e. ZZ ) | 
						
							| 2 |  | lgsdilem2.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | lgsdilem2.3 |  |-  ( ph -> N e. ZZ ) | 
						
							| 4 |  | lgsdilem2.4 |  |-  ( ph -> M =/= 0 ) | 
						
							| 5 |  | lgsdilem2.5 |  |-  ( ph -> N =/= 0 ) | 
						
							| 6 |  | lgsdilem2.6 |  |-  F = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) | 
						
							| 7 |  | mulrid |  |-  ( k e. CC -> ( k x. 1 ) = k ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ph /\ k e. CC ) -> ( k x. 1 ) = k ) | 
						
							| 9 |  | nnabscl |  |-  ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN ) | 
						
							| 10 | 2 4 9 | syl2anc |  |-  ( ph -> ( abs ` M ) e. NN ) | 
						
							| 11 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 12 | 10 11 | eleqtrdi |  |-  ( ph -> ( abs ` M ) e. ( ZZ>= ` 1 ) ) | 
						
							| 13 | 10 | nnzd |  |-  ( ph -> ( abs ` M ) e. ZZ ) | 
						
							| 14 | 2 3 | zmulcld |  |-  ( ph -> ( M x. N ) e. ZZ ) | 
						
							| 15 | 2 | zcnd |  |-  ( ph -> M e. CC ) | 
						
							| 16 | 3 | zcnd |  |-  ( ph -> N e. CC ) | 
						
							| 17 | 15 16 4 5 | mulne0d |  |-  ( ph -> ( M x. N ) =/= 0 ) | 
						
							| 18 |  | nnabscl |  |-  ( ( ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) -> ( abs ` ( M x. N ) ) e. NN ) | 
						
							| 19 | 14 17 18 | syl2anc |  |-  ( ph -> ( abs ` ( M x. N ) ) e. NN ) | 
						
							| 20 | 19 | nnzd |  |-  ( ph -> ( abs ` ( M x. N ) ) e. ZZ ) | 
						
							| 21 | 15 | abscld |  |-  ( ph -> ( abs ` M ) e. RR ) | 
						
							| 22 | 16 | abscld |  |-  ( ph -> ( abs ` N ) e. RR ) | 
						
							| 23 | 15 | absge0d |  |-  ( ph -> 0 <_ ( abs ` M ) ) | 
						
							| 24 |  | nnabscl |  |-  ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) | 
						
							| 25 | 3 5 24 | syl2anc |  |-  ( ph -> ( abs ` N ) e. NN ) | 
						
							| 26 | 25 | nnge1d |  |-  ( ph -> 1 <_ ( abs ` N ) ) | 
						
							| 27 | 21 22 23 26 | lemulge11d |  |-  ( ph -> ( abs ` M ) <_ ( ( abs ` M ) x. ( abs ` N ) ) ) | 
						
							| 28 | 15 16 | absmuld |  |-  ( ph -> ( abs ` ( M x. N ) ) = ( ( abs ` M ) x. ( abs ` N ) ) ) | 
						
							| 29 | 27 28 | breqtrrd |  |-  ( ph -> ( abs ` M ) <_ ( abs ` ( M x. N ) ) ) | 
						
							| 30 |  | eluz2 |  |-  ( ( abs ` ( M x. N ) ) e. ( ZZ>= ` ( abs ` M ) ) <-> ( ( abs ` M ) e. ZZ /\ ( abs ` ( M x. N ) ) e. ZZ /\ ( abs ` M ) <_ ( abs ` ( M x. N ) ) ) ) | 
						
							| 31 | 13 20 29 30 | syl3anbrc |  |-  ( ph -> ( abs ` ( M x. N ) ) e. ( ZZ>= ` ( abs ` M ) ) ) | 
						
							| 32 | 6 | lgsfcl3 |  |-  ( ( A e. ZZ /\ M e. ZZ /\ M =/= 0 ) -> F : NN --> ZZ ) | 
						
							| 33 | 1 2 4 32 | syl3anc |  |-  ( ph -> F : NN --> ZZ ) | 
						
							| 34 |  | elfznn |  |-  ( k e. ( 1 ... ( abs ` M ) ) -> k e. NN ) | 
						
							| 35 |  | ffvelcdm |  |-  ( ( F : NN --> ZZ /\ k e. NN ) -> ( F ` k ) e. ZZ ) | 
						
							| 36 | 33 34 35 | syl2an |  |-  ( ( ph /\ k e. ( 1 ... ( abs ` M ) ) ) -> ( F ` k ) e. ZZ ) | 
						
							| 37 | 36 | zcnd |  |-  ( ( ph /\ k e. ( 1 ... ( abs ` M ) ) ) -> ( F ` k ) e. CC ) | 
						
							| 38 |  | mulcl |  |-  ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ph /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) | 
						
							| 40 | 12 37 39 | seqcl |  |-  ( ph -> ( seq 1 ( x. , F ) ` ( abs ` M ) ) e. CC ) | 
						
							| 41 | 10 | peano2nnd |  |-  ( ph -> ( ( abs ` M ) + 1 ) e. NN ) | 
						
							| 42 |  | elfzuz |  |-  ( k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) -> k e. ( ZZ>= ` ( ( abs ` M ) + 1 ) ) ) | 
						
							| 43 |  | eluznn |  |-  ( ( ( ( abs ` M ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( abs ` M ) + 1 ) ) ) -> k e. NN ) | 
						
							| 44 | 41 42 43 | syl2an |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> k e. NN ) | 
						
							| 45 |  | eleq1w |  |-  ( n = k -> ( n e. Prime <-> k e. Prime ) ) | 
						
							| 46 |  | oveq2 |  |-  ( n = k -> ( A /L n ) = ( A /L k ) ) | 
						
							| 47 |  | oveq1 |  |-  ( n = k -> ( n pCnt M ) = ( k pCnt M ) ) | 
						
							| 48 | 46 47 | oveq12d |  |-  ( n = k -> ( ( A /L n ) ^ ( n pCnt M ) ) = ( ( A /L k ) ^ ( k pCnt M ) ) ) | 
						
							| 49 | 45 48 | ifbieq1d |  |-  ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) ) | 
						
							| 50 |  | ovex |  |-  ( ( A /L k ) ^ ( k pCnt M ) ) e. _V | 
						
							| 51 |  | 1ex |  |-  1 e. _V | 
						
							| 52 | 50 51 | ifex |  |-  if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) e. _V | 
						
							| 53 | 49 6 52 | fvmpt |  |-  ( k e. NN -> ( F ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) ) | 
						
							| 54 | 44 53 | syl |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( F ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) ) | 
						
							| 55 |  | simpr |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> k e. Prime ) | 
						
							| 56 | 2 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> M e. ZZ ) | 
						
							| 57 |  | zq |  |-  ( M e. ZZ -> M e. QQ ) | 
						
							| 58 | 56 57 | syl |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> M e. QQ ) | 
						
							| 59 |  | pcabs |  |-  ( ( k e. Prime /\ M e. QQ ) -> ( k pCnt ( abs ` M ) ) = ( k pCnt M ) ) | 
						
							| 60 | 55 58 59 | syl2anc |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt ( abs ` M ) ) = ( k pCnt M ) ) | 
						
							| 61 |  | elfzle1 |  |-  ( k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) -> ( ( abs ` M ) + 1 ) <_ k ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( ( abs ` M ) + 1 ) <_ k ) | 
						
							| 63 |  | elfzelz |  |-  ( k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) -> k e. ZZ ) | 
						
							| 64 |  | zltp1le |  |-  ( ( ( abs ` M ) e. ZZ /\ k e. ZZ ) -> ( ( abs ` M ) < k <-> ( ( abs ` M ) + 1 ) <_ k ) ) | 
						
							| 65 | 13 63 64 | syl2an |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( ( abs ` M ) < k <-> ( ( abs ` M ) + 1 ) <_ k ) ) | 
						
							| 66 | 62 65 | mpbird |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( abs ` M ) < k ) | 
						
							| 67 | 21 | adantr |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( abs ` M ) e. RR ) | 
						
							| 68 | 63 | adantl |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> k e. ZZ ) | 
						
							| 69 | 68 | zred |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> k e. RR ) | 
						
							| 70 | 67 69 | ltnled |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( ( abs ` M ) < k <-> -. k <_ ( abs ` M ) ) ) | 
						
							| 71 | 66 70 | mpbid |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> -. k <_ ( abs ` M ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> -. k <_ ( abs ` M ) ) | 
						
							| 73 |  | prmz |  |-  ( k e. Prime -> k e. ZZ ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> k e. ZZ ) | 
						
							| 75 | 4 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> M =/= 0 ) | 
						
							| 76 | 56 75 9 | syl2anc |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( abs ` M ) e. NN ) | 
						
							| 77 |  | dvdsle |  |-  ( ( k e. ZZ /\ ( abs ` M ) e. NN ) -> ( k || ( abs ` M ) -> k <_ ( abs ` M ) ) ) | 
						
							| 78 | 74 76 77 | syl2anc |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k || ( abs ` M ) -> k <_ ( abs ` M ) ) ) | 
						
							| 79 | 72 78 | mtod |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> -. k || ( abs ` M ) ) | 
						
							| 80 |  | pceq0 |  |-  ( ( k e. Prime /\ ( abs ` M ) e. NN ) -> ( ( k pCnt ( abs ` M ) ) = 0 <-> -. k || ( abs ` M ) ) ) | 
						
							| 81 | 55 76 80 | syl2anc |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( k pCnt ( abs ` M ) ) = 0 <-> -. k || ( abs ` M ) ) ) | 
						
							| 82 | 79 81 | mpbird |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt ( abs ` M ) ) = 0 ) | 
						
							| 83 | 60 82 | eqtr3d |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt M ) = 0 ) | 
						
							| 84 | 83 | oveq2d |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( k pCnt M ) ) = ( ( A /L k ) ^ 0 ) ) | 
						
							| 85 | 1 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> A e. ZZ ) | 
						
							| 86 |  | lgscl |  |-  ( ( A e. ZZ /\ k e. ZZ ) -> ( A /L k ) e. ZZ ) | 
						
							| 87 | 85 74 86 | syl2anc |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( A /L k ) e. ZZ ) | 
						
							| 88 | 87 | zcnd |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( A /L k ) e. CC ) | 
						
							| 89 | 88 | exp0d |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ 0 ) = 1 ) | 
						
							| 90 | 84 89 | eqtrd |  |-  ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( k pCnt M ) ) = 1 ) | 
						
							| 91 | 90 | ifeq1da |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) = if ( k e. Prime , 1 , 1 ) ) | 
						
							| 92 |  | ifid |  |-  if ( k e. Prime , 1 , 1 ) = 1 | 
						
							| 93 | 91 92 | eqtrdi |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) = 1 ) | 
						
							| 94 | 54 93 | eqtrd |  |-  ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( F ` k ) = 1 ) | 
						
							| 95 | 8 12 31 40 94 | seqid2 |  |-  ( ph -> ( seq 1 ( x. , F ) ` ( abs ` M ) ) = ( seq 1 ( x. , F ) ` ( abs ` ( M x. N ) ) ) ) |