| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1cn |  |-  1 e. CC | 
						
							| 2 |  | 0cn |  |-  0 e. CC | 
						
							| 3 | 1 2 | ifcli |  |-  if ( ( B ^ 2 ) = 1 , 1 , 0 ) e. CC | 
						
							| 4 | 3 | mullidi |  |-  ( 1 x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = if ( ( B ^ 2 ) = 1 , 1 , 0 ) | 
						
							| 5 |  | iftrue |  |-  ( ( A ^ 2 ) = 1 -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) = 1 ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) = 1 ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = ( 1 x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) ) | 
						
							| 8 |  | simpl1 |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. ZZ ) | 
						
							| 9 | 8 | zcnd |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. CC ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> A e. CC ) | 
						
							| 11 |  | simpl2 |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. ZZ ) | 
						
							| 12 | 11 | zcnd |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. CC ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> B e. CC ) | 
						
							| 14 | 10 13 | sqmuld |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( ( A x. B ) ^ 2 ) = ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) | 
						
							| 15 |  | simpr |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( A ^ 2 ) = 1 ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( ( A ^ 2 ) x. ( B ^ 2 ) ) = ( 1 x. ( B ^ 2 ) ) ) | 
						
							| 17 | 12 | sqcld |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( B ^ 2 ) e. CC ) | 
						
							| 18 | 17 | ad2antrr |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( B ^ 2 ) e. CC ) | 
						
							| 19 | 18 | mullidd |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( 1 x. ( B ^ 2 ) ) = ( B ^ 2 ) ) | 
						
							| 20 | 14 16 19 | 3eqtrd |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( ( A x. B ) ^ 2 ) = ( B ^ 2 ) ) | 
						
							| 21 | 20 | eqeq1d |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( ( ( A x. B ) ^ 2 ) = 1 <-> ( B ^ 2 ) = 1 ) ) | 
						
							| 22 | 21 | ifbid |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) = if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 23 | 4 7 22 | 3eqtr4a |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 24 | 3 | mul02i |  |-  ( 0 x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = 0 | 
						
							| 25 |  | iffalse |  |-  ( -. ( A ^ 2 ) = 1 -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) = 0 ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ -. ( A ^ 2 ) = 1 ) -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) = 0 ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ -. ( A ^ 2 ) = 1 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = ( 0 x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) ) | 
						
							| 28 |  | dvdsmul1 |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> A || ( A x. B ) ) | 
						
							| 29 | 8 11 28 | syl2anc |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A || ( A x. B ) ) | 
						
							| 30 | 8 11 | zmulcld |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A x. B ) e. ZZ ) | 
						
							| 31 |  | dvdssq |  |-  ( ( A e. ZZ /\ ( A x. B ) e. ZZ ) -> ( A || ( A x. B ) <-> ( A ^ 2 ) || ( ( A x. B ) ^ 2 ) ) ) | 
						
							| 32 | 8 30 31 | syl2anc |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A || ( A x. B ) <-> ( A ^ 2 ) || ( ( A x. B ) ^ 2 ) ) ) | 
						
							| 33 | 29 32 | mpbid |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A ^ 2 ) || ( ( A x. B ) ^ 2 ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( A ^ 2 ) || ( ( A x. B ) ^ 2 ) ) | 
						
							| 35 |  | breq2 |  |-  ( ( ( A x. B ) ^ 2 ) = 1 -> ( ( A ^ 2 ) || ( ( A x. B ) ^ 2 ) <-> ( A ^ 2 ) || 1 ) ) | 
						
							| 36 | 34 35 | syl5ibcom |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( ( A x. B ) ^ 2 ) = 1 -> ( A ^ 2 ) || 1 ) ) | 
						
							| 37 |  | simprl |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A =/= 0 ) | 
						
							| 38 | 37 | neneqd |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> -. A = 0 ) | 
						
							| 39 |  | sqeq0 |  |-  ( A e. CC -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) | 
						
							| 40 | 9 39 | syl |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) | 
						
							| 41 | 38 40 | mtbird |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> -. ( A ^ 2 ) = 0 ) | 
						
							| 42 |  | zsqcl2 |  |-  ( A e. ZZ -> ( A ^ 2 ) e. NN0 ) | 
						
							| 43 | 8 42 | syl |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A ^ 2 ) e. NN0 ) | 
						
							| 44 |  | elnn0 |  |-  ( ( A ^ 2 ) e. NN0 <-> ( ( A ^ 2 ) e. NN \/ ( A ^ 2 ) = 0 ) ) | 
						
							| 45 | 43 44 | sylib |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A ^ 2 ) e. NN \/ ( A ^ 2 ) = 0 ) ) | 
						
							| 46 | 45 | ord |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( -. ( A ^ 2 ) e. NN -> ( A ^ 2 ) = 0 ) ) | 
						
							| 47 | 41 46 | mt3d |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A ^ 2 ) e. NN ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( A ^ 2 ) e. NN ) | 
						
							| 49 | 48 | nnzd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( A ^ 2 ) e. ZZ ) | 
						
							| 50 |  | 1nn |  |-  1 e. NN | 
						
							| 51 |  | dvdsle |  |-  ( ( ( A ^ 2 ) e. ZZ /\ 1 e. NN ) -> ( ( A ^ 2 ) || 1 -> ( A ^ 2 ) <_ 1 ) ) | 
						
							| 52 | 49 50 51 | sylancl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A ^ 2 ) || 1 -> ( A ^ 2 ) <_ 1 ) ) | 
						
							| 53 | 48 | nnge1d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> 1 <_ ( A ^ 2 ) ) | 
						
							| 54 | 52 53 | jctird |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A ^ 2 ) || 1 -> ( ( A ^ 2 ) <_ 1 /\ 1 <_ ( A ^ 2 ) ) ) ) | 
						
							| 55 | 48 | nnred |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( A ^ 2 ) e. RR ) | 
						
							| 56 |  | 1re |  |-  1 e. RR | 
						
							| 57 |  | letri3 |  |-  ( ( ( A ^ 2 ) e. RR /\ 1 e. RR ) -> ( ( A ^ 2 ) = 1 <-> ( ( A ^ 2 ) <_ 1 /\ 1 <_ ( A ^ 2 ) ) ) ) | 
						
							| 58 | 55 56 57 | sylancl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A ^ 2 ) = 1 <-> ( ( A ^ 2 ) <_ 1 /\ 1 <_ ( A ^ 2 ) ) ) ) | 
						
							| 59 | 54 58 | sylibrd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A ^ 2 ) || 1 -> ( A ^ 2 ) = 1 ) ) | 
						
							| 60 | 36 59 | syld |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( ( A x. B ) ^ 2 ) = 1 -> ( A ^ 2 ) = 1 ) ) | 
						
							| 61 | 60 | con3dimp |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ -. ( A ^ 2 ) = 1 ) -> -. ( ( A x. B ) ^ 2 ) = 1 ) | 
						
							| 62 | 61 | iffalsed |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ -. ( A ^ 2 ) = 1 ) -> if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) = 0 ) | 
						
							| 63 | 24 27 62 | 3eqtr4a |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ -. ( A ^ 2 ) = 1 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 64 | 23 63 | pm2.61dan |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 65 |  | oveq2 |  |-  ( N = 0 -> ( A /L N ) = ( A /L 0 ) ) | 
						
							| 66 |  | lgs0 |  |-  ( A e. ZZ -> ( A /L 0 ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 67 | 8 66 | syl |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A /L 0 ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 68 | 65 67 | sylan9eqr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( A /L N ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 69 |  | oveq2 |  |-  ( N = 0 -> ( B /L N ) = ( B /L 0 ) ) | 
						
							| 70 |  | lgs0 |  |-  ( B e. ZZ -> ( B /L 0 ) = if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 71 | 11 70 | syl |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( B /L 0 ) = if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 72 | 69 71 | sylan9eqr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( B /L N ) = if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 73 | 68 72 | oveq12d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A /L N ) x. ( B /L N ) ) = ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) ) | 
						
							| 74 |  | oveq2 |  |-  ( N = 0 -> ( ( A x. B ) /L N ) = ( ( A x. B ) /L 0 ) ) | 
						
							| 75 |  | lgs0 |  |-  ( ( A x. B ) e. ZZ -> ( ( A x. B ) /L 0 ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 76 | 30 75 | syl |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) /L 0 ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 77 | 74 76 | sylan9eqr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A x. B ) /L N ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) | 
						
							| 78 | 64 73 77 | 3eqtr4rd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) | 
						
							| 79 |  | lgsdilem |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 81 |  | simpl3 |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> N e. ZZ ) | 
						
							| 82 |  | nnabscl |  |-  ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) | 
						
							| 83 | 81 82 | sylan |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( abs ` N ) e. NN ) | 
						
							| 84 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 85 | 83 84 | eleqtrdi |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( abs ` N ) e. ( ZZ>= ` 1 ) ) | 
						
							| 86 |  | simpll1 |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> A e. ZZ ) | 
						
							| 87 |  | simpll3 |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> N e. ZZ ) | 
						
							| 88 |  | simpr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> N =/= 0 ) | 
						
							| 89 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 90 | 89 | lgsfcl3 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) | 
						
							| 91 | 86 87 88 90 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) | 
						
							| 92 |  | elfznn |  |-  ( k e. ( 1 ... ( abs ` N ) ) -> k e. NN ) | 
						
							| 93 |  | ffvelcdm |  |-  ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ /\ k e. NN ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) | 
						
							| 94 | 91 92 93 | syl2an |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) | 
						
							| 95 | 94 | zcnd |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. CC ) | 
						
							| 96 |  | simpll2 |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> B e. ZZ ) | 
						
							| 97 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 98 | 97 | lgsfcl3 |  |-  ( ( B e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) | 
						
							| 99 | 96 87 88 98 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) | 
						
							| 100 |  | ffvelcdm |  |-  ( ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ /\ k e. NN ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) | 
						
							| 101 | 99 92 100 | syl2an |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) | 
						
							| 102 | 101 | zcnd |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. CC ) | 
						
							| 103 | 86 | adantr |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> A e. ZZ ) | 
						
							| 104 | 96 | adantr |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> B e. ZZ ) | 
						
							| 105 |  | simpr |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> k e. Prime ) | 
						
							| 106 |  | lgsdirprm |  |-  ( ( A e. ZZ /\ B e. ZZ /\ k e. Prime ) -> ( ( A x. B ) /L k ) = ( ( A /L k ) x. ( B /L k ) ) ) | 
						
							| 107 | 103 104 105 106 | syl3anc |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( ( A x. B ) /L k ) = ( ( A /L k ) x. ( B /L k ) ) ) | 
						
							| 108 | 107 | oveq1d |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) = ( ( ( A /L k ) x. ( B /L k ) ) ^ ( k pCnt N ) ) ) | 
						
							| 109 |  | prmz |  |-  ( k e. Prime -> k e. ZZ ) | 
						
							| 110 |  | lgscl |  |-  ( ( A e. ZZ /\ k e. ZZ ) -> ( A /L k ) e. ZZ ) | 
						
							| 111 | 86 109 110 | syl2an |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( A /L k ) e. ZZ ) | 
						
							| 112 | 111 | zcnd |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( A /L k ) e. CC ) | 
						
							| 113 |  | lgscl |  |-  ( ( B e. ZZ /\ k e. ZZ ) -> ( B /L k ) e. ZZ ) | 
						
							| 114 | 96 109 113 | syl2an |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( B /L k ) e. ZZ ) | 
						
							| 115 | 114 | zcnd |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( B /L k ) e. CC ) | 
						
							| 116 | 87 | adantr |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> N e. ZZ ) | 
						
							| 117 | 88 | adantr |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> N =/= 0 ) | 
						
							| 118 |  | pczcl |  |-  ( ( k e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( k pCnt N ) e. NN0 ) | 
						
							| 119 | 105 116 117 118 | syl12anc |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( k pCnt N ) e. NN0 ) | 
						
							| 120 | 112 115 119 | mulexpd |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( ( ( A /L k ) x. ( B /L k ) ) ^ ( k pCnt N ) ) = ( ( ( A /L k ) ^ ( k pCnt N ) ) x. ( ( B /L k ) ^ ( k pCnt N ) ) ) ) | 
						
							| 121 | 108 120 | eqtrd |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) = ( ( ( A /L k ) ^ ( k pCnt N ) ) x. ( ( B /L k ) ^ ( k pCnt N ) ) ) ) | 
						
							| 122 |  | iftrue |  |-  ( k e. Prime -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) ) | 
						
							| 123 | 122 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) ) | 
						
							| 124 |  | iftrue |  |-  ( k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) = ( ( A /L k ) ^ ( k pCnt N ) ) ) | 
						
							| 125 |  | iftrue |  |-  ( k e. Prime -> if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) = ( ( B /L k ) ^ ( k pCnt N ) ) ) | 
						
							| 126 | 124 125 | oveq12d |  |-  ( k e. Prime -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( ( ( A /L k ) ^ ( k pCnt N ) ) x. ( ( B /L k ) ^ ( k pCnt N ) ) ) ) | 
						
							| 127 | 126 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( ( ( A /L k ) ^ ( k pCnt N ) ) x. ( ( B /L k ) ^ ( k pCnt N ) ) ) ) | 
						
							| 128 | 121 123 127 | 3eqtr4d |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) | 
						
							| 129 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 130 | 129 | eqcomi |  |-  1 = ( 1 x. 1 ) | 
						
							| 131 |  | iffalse |  |-  ( -. k e. Prime -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = 1 ) | 
						
							| 132 |  | iffalse |  |-  ( -. k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) = 1 ) | 
						
							| 133 |  | iffalse |  |-  ( -. k e. Prime -> if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) = 1 ) | 
						
							| 134 | 132 133 | oveq12d |  |-  ( -. k e. Prime -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( 1 x. 1 ) ) | 
						
							| 135 | 130 131 134 | 3eqtr4a |  |-  ( -. k e. Prime -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) | 
						
							| 136 | 135 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ -. k e. Prime ) -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) | 
						
							| 137 | 128 136 | pm2.61dan |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) | 
						
							| 138 | 137 | adantr |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) | 
						
							| 139 | 92 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> k e. NN ) | 
						
							| 140 |  | eleq1w |  |-  ( n = k -> ( n e. Prime <-> k e. Prime ) ) | 
						
							| 141 |  | oveq2 |  |-  ( n = k -> ( ( A x. B ) /L n ) = ( ( A x. B ) /L k ) ) | 
						
							| 142 |  | oveq1 |  |-  ( n = k -> ( n pCnt N ) = ( k pCnt N ) ) | 
						
							| 143 | 141 142 | oveq12d |  |-  ( n = k -> ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) = ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) ) | 
						
							| 144 | 140 143 | ifbieq1d |  |-  ( n = k -> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 145 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 146 |  | ovex |  |-  ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) e. _V | 
						
							| 147 |  | 1ex |  |-  1 e. _V | 
						
							| 148 | 146 147 | ifex |  |-  if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) e. _V | 
						
							| 149 | 144 145 148 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 150 | 139 149 | syl |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 151 |  | oveq2 |  |-  ( n = k -> ( A /L n ) = ( A /L k ) ) | 
						
							| 152 | 151 142 | oveq12d |  |-  ( n = k -> ( ( A /L n ) ^ ( n pCnt N ) ) = ( ( A /L k ) ^ ( k pCnt N ) ) ) | 
						
							| 153 | 140 152 | ifbieq1d |  |-  ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 154 |  | ovex |  |-  ( ( A /L k ) ^ ( k pCnt N ) ) e. _V | 
						
							| 155 | 154 147 | ifex |  |-  if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) e. _V | 
						
							| 156 | 153 89 155 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 157 | 139 156 | syl |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 158 |  | oveq2 |  |-  ( n = k -> ( B /L n ) = ( B /L k ) ) | 
						
							| 159 | 158 142 | oveq12d |  |-  ( n = k -> ( ( B /L n ) ^ ( n pCnt N ) ) = ( ( B /L k ) ^ ( k pCnt N ) ) ) | 
						
							| 160 | 140 159 | ifbieq1d |  |-  ( n = k -> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 161 |  | ovex |  |-  ( ( B /L k ) ^ ( k pCnt N ) ) e. _V | 
						
							| 162 | 161 147 | ifex |  |-  if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) e. _V | 
						
							| 163 | 160 97 162 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 164 | 139 163 | syl |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) | 
						
							| 165 | 157 164 | oveq12d |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) x. ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) | 
						
							| 166 | 138 150 165 | 3eqtr4d |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) x. ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) ) ) | 
						
							| 167 | 85 95 102 166 | prodfmul |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) = ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 168 | 80 167 | oveq12d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) = ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 169 | 30 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( A x. B ) e. ZZ ) | 
						
							| 170 | 145 | lgsval4 |  |-  ( ( ( A x. B ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( A x. B ) /L N ) = ( if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 171 | 169 87 88 170 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( ( A x. B ) /L N ) = ( if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 172 | 89 | lgsval4 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 173 | 86 87 88 172 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 174 | 97 | lgsval4 |  |-  ( ( B e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( B /L N ) = ( if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 175 | 96 87 88 174 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( B /L N ) = ( if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 176 | 173 175 | oveq12d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( ( A /L N ) x. ( B /L N ) ) = ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) x. ( if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 177 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 178 | 177 1 | ifcli |  |-  if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC | 
						
							| 179 | 178 | a1i |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC ) | 
						
							| 180 |  | mulcl |  |-  ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) | 
						
							| 181 | 180 | adantl |  |-  ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) | 
						
							| 182 | 85 95 181 | seqcl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. CC ) | 
						
							| 183 | 177 1 | ifcli |  |-  if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) e. CC | 
						
							| 184 | 183 | a1i |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) e. CC ) | 
						
							| 185 | 85 102 181 | seqcl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. CC ) | 
						
							| 186 | 179 182 184 185 | mul4d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) x. ( if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) = ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 187 | 176 186 | eqtrd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( ( A /L N ) x. ( B /L N ) ) = ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 188 | 168 171 187 | 3eqtr4d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) | 
						
							| 189 | 78 188 | pm2.61dane |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |