| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovex |
|- ( A mod 8 ) e. _V |
| 2 |
1
|
elpr |
|- ( ( A mod 8 ) e. { 1 , 7 } <-> ( ( A mod 8 ) = 1 \/ ( A mod 8 ) = 7 ) ) |
| 3 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 4 |
3
|
ad2antrr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> A e. RR ) |
| 5 |
|
1red |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> 1 e. RR ) |
| 6 |
|
simplr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> B e. ZZ ) |
| 7 |
|
8re |
|- 8 e. RR |
| 8 |
|
8pos |
|- 0 < 8 |
| 9 |
7 8
|
elrpii |
|- 8 e. RR+ |
| 10 |
9
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> 8 e. RR+ ) |
| 11 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( A mod 8 ) = 1 ) |
| 12 |
|
lgsdir2lem1 |
|- ( ( ( 1 mod 8 ) = 1 /\ ( -u 1 mod 8 ) = 7 ) /\ ( ( 3 mod 8 ) = 3 /\ ( -u 3 mod 8 ) = 5 ) ) |
| 13 |
12
|
simpli |
|- ( ( 1 mod 8 ) = 1 /\ ( -u 1 mod 8 ) = 7 ) |
| 14 |
13
|
simpli |
|- ( 1 mod 8 ) = 1 |
| 15 |
11 14
|
eqtr4di |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( A mod 8 ) = ( 1 mod 8 ) ) |
| 16 |
|
modmul1 |
|- ( ( ( A e. RR /\ 1 e. RR ) /\ ( B e. ZZ /\ 8 e. RR+ ) /\ ( A mod 8 ) = ( 1 mod 8 ) ) -> ( ( A x. B ) mod 8 ) = ( ( 1 x. B ) mod 8 ) ) |
| 17 |
4 5 6 10 15 16
|
syl221anc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( ( A x. B ) mod 8 ) = ( ( 1 x. B ) mod 8 ) ) |
| 18 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
| 19 |
18
|
ad2antlr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> B e. CC ) |
| 20 |
19
|
mullidd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( 1 x. B ) = B ) |
| 21 |
20
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( ( 1 x. B ) mod 8 ) = ( B mod 8 ) ) |
| 22 |
17 21
|
eqtrd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( ( A x. B ) mod 8 ) = ( B mod 8 ) ) |
| 23 |
22
|
eleq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( ( ( A x. B ) mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) |
| 24 |
3
|
ad2antrr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> A e. RR ) |
| 25 |
|
neg1rr |
|- -u 1 e. RR |
| 26 |
25
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> -u 1 e. RR ) |
| 27 |
|
simplr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> B e. ZZ ) |
| 28 |
9
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> 8 e. RR+ ) |
| 29 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( A mod 8 ) = 7 ) |
| 30 |
13
|
simpri |
|- ( -u 1 mod 8 ) = 7 |
| 31 |
29 30
|
eqtr4di |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( A mod 8 ) = ( -u 1 mod 8 ) ) |
| 32 |
|
modmul1 |
|- ( ( ( A e. RR /\ -u 1 e. RR ) /\ ( B e. ZZ /\ 8 e. RR+ ) /\ ( A mod 8 ) = ( -u 1 mod 8 ) ) -> ( ( A x. B ) mod 8 ) = ( ( -u 1 x. B ) mod 8 ) ) |
| 33 |
24 26 27 28 31 32
|
syl221anc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( A x. B ) mod 8 ) = ( ( -u 1 x. B ) mod 8 ) ) |
| 34 |
18
|
ad2antlr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> B e. CC ) |
| 35 |
34
|
mulm1d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( -u 1 x. B ) = -u B ) |
| 36 |
35
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( -u 1 x. B ) mod 8 ) = ( -u B mod 8 ) ) |
| 37 |
33 36
|
eqtrd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( A x. B ) mod 8 ) = ( -u B mod 8 ) ) |
| 38 |
37
|
eleq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( ( A x. B ) mod 8 ) e. { 1 , 7 } <-> ( -u B mod 8 ) e. { 1 , 7 } ) ) |
| 39 |
|
znegcl |
|- ( B e. ZZ -> -u B e. ZZ ) |
| 40 |
|
oveq1 |
|- ( x = -u B -> ( x mod 8 ) = ( -u B mod 8 ) ) |
| 41 |
40
|
eleq1d |
|- ( x = -u B -> ( ( x mod 8 ) e. { 1 , 7 } <-> ( -u B mod 8 ) e. { 1 , 7 } ) ) |
| 42 |
|
negeq |
|- ( x = -u B -> -u x = -u -u B ) |
| 43 |
42
|
oveq1d |
|- ( x = -u B -> ( -u x mod 8 ) = ( -u -u B mod 8 ) ) |
| 44 |
43
|
eleq1d |
|- ( x = -u B -> ( ( -u x mod 8 ) e. { 1 , 7 } <-> ( -u -u B mod 8 ) e. { 1 , 7 } ) ) |
| 45 |
41 44
|
imbi12d |
|- ( x = -u B -> ( ( ( x mod 8 ) e. { 1 , 7 } -> ( -u x mod 8 ) e. { 1 , 7 } ) <-> ( ( -u B mod 8 ) e. { 1 , 7 } -> ( -u -u B mod 8 ) e. { 1 , 7 } ) ) ) |
| 46 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 47 |
|
neg1cn |
|- -u 1 e. CC |
| 48 |
|
mulcom |
|- ( ( x e. CC /\ -u 1 e. CC ) -> ( x x. -u 1 ) = ( -u 1 x. x ) ) |
| 49 |
47 48
|
mpan2 |
|- ( x e. CC -> ( x x. -u 1 ) = ( -u 1 x. x ) ) |
| 50 |
|
mulm1 |
|- ( x e. CC -> ( -u 1 x. x ) = -u x ) |
| 51 |
49 50
|
eqtrd |
|- ( x e. CC -> ( x x. -u 1 ) = -u x ) |
| 52 |
46 51
|
syl |
|- ( x e. ZZ -> ( x x. -u 1 ) = -u x ) |
| 53 |
52
|
adantr |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( x x. -u 1 ) = -u x ) |
| 54 |
53
|
oveq1d |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( ( x x. -u 1 ) mod 8 ) = ( -u x mod 8 ) ) |
| 55 |
|
zre |
|- ( x e. ZZ -> x e. RR ) |
| 56 |
55
|
adantr |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> x e. RR ) |
| 57 |
|
1red |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> 1 e. RR ) |
| 58 |
|
neg1z |
|- -u 1 e. ZZ |
| 59 |
58
|
a1i |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> -u 1 e. ZZ ) |
| 60 |
9
|
a1i |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> 8 e. RR+ ) |
| 61 |
|
simpr |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( x mod 8 ) = 1 ) |
| 62 |
61 14
|
eqtr4di |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( x mod 8 ) = ( 1 mod 8 ) ) |
| 63 |
|
modmul1 |
|- ( ( ( x e. RR /\ 1 e. RR ) /\ ( -u 1 e. ZZ /\ 8 e. RR+ ) /\ ( x mod 8 ) = ( 1 mod 8 ) ) -> ( ( x x. -u 1 ) mod 8 ) = ( ( 1 x. -u 1 ) mod 8 ) ) |
| 64 |
56 57 59 60 62 63
|
syl221anc |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( ( x x. -u 1 ) mod 8 ) = ( ( 1 x. -u 1 ) mod 8 ) ) |
| 65 |
54 64
|
eqtr3d |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( -u x mod 8 ) = ( ( 1 x. -u 1 ) mod 8 ) ) |
| 66 |
47
|
mullidi |
|- ( 1 x. -u 1 ) = -u 1 |
| 67 |
66
|
oveq1i |
|- ( ( 1 x. -u 1 ) mod 8 ) = ( -u 1 mod 8 ) |
| 68 |
67 30
|
eqtri |
|- ( ( 1 x. -u 1 ) mod 8 ) = 7 |
| 69 |
65 68
|
eqtrdi |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( -u x mod 8 ) = 7 ) |
| 70 |
69
|
ex |
|- ( x e. ZZ -> ( ( x mod 8 ) = 1 -> ( -u x mod 8 ) = 7 ) ) |
| 71 |
52
|
adantr |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( x x. -u 1 ) = -u x ) |
| 72 |
71
|
oveq1d |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( ( x x. -u 1 ) mod 8 ) = ( -u x mod 8 ) ) |
| 73 |
55
|
adantr |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> x e. RR ) |
| 74 |
25
|
a1i |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> -u 1 e. RR ) |
| 75 |
58
|
a1i |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> -u 1 e. ZZ ) |
| 76 |
9
|
a1i |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> 8 e. RR+ ) |
| 77 |
|
simpr |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( x mod 8 ) = 7 ) |
| 78 |
77 30
|
eqtr4di |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( x mod 8 ) = ( -u 1 mod 8 ) ) |
| 79 |
|
modmul1 |
|- ( ( ( x e. RR /\ -u 1 e. RR ) /\ ( -u 1 e. ZZ /\ 8 e. RR+ ) /\ ( x mod 8 ) = ( -u 1 mod 8 ) ) -> ( ( x x. -u 1 ) mod 8 ) = ( ( -u 1 x. -u 1 ) mod 8 ) ) |
| 80 |
73 74 75 76 78 79
|
syl221anc |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( ( x x. -u 1 ) mod 8 ) = ( ( -u 1 x. -u 1 ) mod 8 ) ) |
| 81 |
72 80
|
eqtr3d |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( -u x mod 8 ) = ( ( -u 1 x. -u 1 ) mod 8 ) ) |
| 82 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
| 83 |
82
|
oveq1i |
|- ( ( -u 1 x. -u 1 ) mod 8 ) = ( 1 mod 8 ) |
| 84 |
83 14
|
eqtri |
|- ( ( -u 1 x. -u 1 ) mod 8 ) = 1 |
| 85 |
81 84
|
eqtrdi |
|- ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( -u x mod 8 ) = 1 ) |
| 86 |
85
|
ex |
|- ( x e. ZZ -> ( ( x mod 8 ) = 7 -> ( -u x mod 8 ) = 1 ) ) |
| 87 |
70 86
|
orim12d |
|- ( x e. ZZ -> ( ( ( x mod 8 ) = 1 \/ ( x mod 8 ) = 7 ) -> ( ( -u x mod 8 ) = 7 \/ ( -u x mod 8 ) = 1 ) ) ) |
| 88 |
|
ovex |
|- ( x mod 8 ) e. _V |
| 89 |
88
|
elpr |
|- ( ( x mod 8 ) e. { 1 , 7 } <-> ( ( x mod 8 ) = 1 \/ ( x mod 8 ) = 7 ) ) |
| 90 |
|
ovex |
|- ( -u x mod 8 ) e. _V |
| 91 |
90
|
elpr |
|- ( ( -u x mod 8 ) e. { 1 , 7 } <-> ( ( -u x mod 8 ) = 1 \/ ( -u x mod 8 ) = 7 ) ) |
| 92 |
|
orcom |
|- ( ( ( -u x mod 8 ) = 1 \/ ( -u x mod 8 ) = 7 ) <-> ( ( -u x mod 8 ) = 7 \/ ( -u x mod 8 ) = 1 ) ) |
| 93 |
91 92
|
bitri |
|- ( ( -u x mod 8 ) e. { 1 , 7 } <-> ( ( -u x mod 8 ) = 7 \/ ( -u x mod 8 ) = 1 ) ) |
| 94 |
87 89 93
|
3imtr4g |
|- ( x e. ZZ -> ( ( x mod 8 ) e. { 1 , 7 } -> ( -u x mod 8 ) e. { 1 , 7 } ) ) |
| 95 |
45 94
|
vtoclga |
|- ( -u B e. ZZ -> ( ( -u B mod 8 ) e. { 1 , 7 } -> ( -u -u B mod 8 ) e. { 1 , 7 } ) ) |
| 96 |
39 95
|
syl |
|- ( B e. ZZ -> ( ( -u B mod 8 ) e. { 1 , 7 } -> ( -u -u B mod 8 ) e. { 1 , 7 } ) ) |
| 97 |
18
|
negnegd |
|- ( B e. ZZ -> -u -u B = B ) |
| 98 |
97
|
oveq1d |
|- ( B e. ZZ -> ( -u -u B mod 8 ) = ( B mod 8 ) ) |
| 99 |
98
|
eleq1d |
|- ( B e. ZZ -> ( ( -u -u B mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) |
| 100 |
96 99
|
sylibd |
|- ( B e. ZZ -> ( ( -u B mod 8 ) e. { 1 , 7 } -> ( B mod 8 ) e. { 1 , 7 } ) ) |
| 101 |
|
oveq1 |
|- ( x = B -> ( x mod 8 ) = ( B mod 8 ) ) |
| 102 |
101
|
eleq1d |
|- ( x = B -> ( ( x mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) |
| 103 |
|
negeq |
|- ( x = B -> -u x = -u B ) |
| 104 |
103
|
oveq1d |
|- ( x = B -> ( -u x mod 8 ) = ( -u B mod 8 ) ) |
| 105 |
104
|
eleq1d |
|- ( x = B -> ( ( -u x mod 8 ) e. { 1 , 7 } <-> ( -u B mod 8 ) e. { 1 , 7 } ) ) |
| 106 |
102 105
|
imbi12d |
|- ( x = B -> ( ( ( x mod 8 ) e. { 1 , 7 } -> ( -u x mod 8 ) e. { 1 , 7 } ) <-> ( ( B mod 8 ) e. { 1 , 7 } -> ( -u B mod 8 ) e. { 1 , 7 } ) ) ) |
| 107 |
106 94
|
vtoclga |
|- ( B e. ZZ -> ( ( B mod 8 ) e. { 1 , 7 } -> ( -u B mod 8 ) e. { 1 , 7 } ) ) |
| 108 |
100 107
|
impbid |
|- ( B e. ZZ -> ( ( -u B mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) |
| 109 |
108
|
ad2antlr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( -u B mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) |
| 110 |
38 109
|
bitrd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( ( A x. B ) mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) |
| 111 |
23 110
|
jaodan |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 1 \/ ( A mod 8 ) = 7 ) ) -> ( ( ( A x. B ) mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) |
| 112 |
2 111
|
sylan2b |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) e. { 1 , 7 } ) -> ( ( ( A x. B ) mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) |