| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovex |
|- ( A mod 8 ) e. _V |
| 2 |
1
|
elpr |
|- ( ( A mod 8 ) e. { 3 , 5 } <-> ( ( A mod 8 ) = 3 \/ ( A mod 8 ) = 5 ) ) |
| 3 |
|
ovex |
|- ( B mod 8 ) e. _V |
| 4 |
3
|
elpr |
|- ( ( B mod 8 ) e. { 3 , 5 } <-> ( ( B mod 8 ) = 3 \/ ( B mod 8 ) = 5 ) ) |
| 5 |
2 4
|
anbi12i |
|- ( ( ( A mod 8 ) e. { 3 , 5 } /\ ( B mod 8 ) e. { 3 , 5 } ) <-> ( ( ( A mod 8 ) = 3 \/ ( A mod 8 ) = 5 ) /\ ( ( B mod 8 ) = 3 \/ ( B mod 8 ) = 5 ) ) ) |
| 6 |
|
simpll |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> A e. ZZ ) |
| 7 |
|
3z |
|- 3 e. ZZ |
| 8 |
7
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> 3 e. ZZ ) |
| 9 |
|
simplr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> B e. ZZ ) |
| 10 |
|
8re |
|- 8 e. RR |
| 11 |
|
8pos |
|- 0 < 8 |
| 12 |
10 11
|
elrpii |
|- 8 e. RR+ |
| 13 |
12
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> 8 e. RR+ ) |
| 14 |
|
simprl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( A mod 8 ) = 3 ) |
| 15 |
|
lgsdir2lem1 |
|- ( ( ( 1 mod 8 ) = 1 /\ ( -u 1 mod 8 ) = 7 ) /\ ( ( 3 mod 8 ) = 3 /\ ( -u 3 mod 8 ) = 5 ) ) |
| 16 |
15
|
simpri |
|- ( ( 3 mod 8 ) = 3 /\ ( -u 3 mod 8 ) = 5 ) |
| 17 |
16
|
simpli |
|- ( 3 mod 8 ) = 3 |
| 18 |
14 17
|
eqtr4di |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( A mod 8 ) = ( 3 mod 8 ) ) |
| 19 |
|
simprr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( B mod 8 ) = 3 ) |
| 20 |
19 17
|
eqtr4di |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( B mod 8 ) = ( 3 mod 8 ) ) |
| 21 |
6 8 9 8 13 18 20
|
modmul12d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) ) |
| 22 |
21
|
orcd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) |
| 23 |
22
|
ex |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) |
| 24 |
|
simpll |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> A e. ZZ ) |
| 25 |
|
znegcl |
|- ( 3 e. ZZ -> -u 3 e. ZZ ) |
| 26 |
7 25
|
mp1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> -u 3 e. ZZ ) |
| 27 |
|
simplr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> B e. ZZ ) |
| 28 |
7
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> 3 e. ZZ ) |
| 29 |
12
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> 8 e. RR+ ) |
| 30 |
|
simprl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( A mod 8 ) = 5 ) |
| 31 |
16
|
simpri |
|- ( -u 3 mod 8 ) = 5 |
| 32 |
30 31
|
eqtr4di |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( A mod 8 ) = ( -u 3 mod 8 ) ) |
| 33 |
|
simprr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( B mod 8 ) = 3 ) |
| 34 |
33 17
|
eqtr4di |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( B mod 8 ) = ( 3 mod 8 ) ) |
| 35 |
24 26 27 28 29 32 34
|
modmul12d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( ( A x. B ) mod 8 ) = ( ( -u 3 x. 3 ) mod 8 ) ) |
| 36 |
|
3cn |
|- 3 e. CC |
| 37 |
36 36
|
mulneg1i |
|- ( -u 3 x. 3 ) = -u ( 3 x. 3 ) |
| 38 |
37
|
oveq1i |
|- ( ( -u 3 x. 3 ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) |
| 39 |
35 38
|
eqtrdi |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) |
| 40 |
39
|
olcd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) |
| 41 |
40
|
ex |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) |
| 42 |
|
simpll |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> A e. ZZ ) |
| 43 |
7
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> 3 e. ZZ ) |
| 44 |
|
simplr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> B e. ZZ ) |
| 45 |
7 25
|
mp1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> -u 3 e. ZZ ) |
| 46 |
12
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> 8 e. RR+ ) |
| 47 |
|
simprl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( A mod 8 ) = 3 ) |
| 48 |
47 17
|
eqtr4di |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( A mod 8 ) = ( 3 mod 8 ) ) |
| 49 |
|
simprr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( B mod 8 ) = 5 ) |
| 50 |
49 31
|
eqtr4di |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( B mod 8 ) = ( -u 3 mod 8 ) ) |
| 51 |
42 43 44 45 46 48 50
|
modmul12d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( ( A x. B ) mod 8 ) = ( ( 3 x. -u 3 ) mod 8 ) ) |
| 52 |
36 36
|
mulneg2i |
|- ( 3 x. -u 3 ) = -u ( 3 x. 3 ) |
| 53 |
52
|
oveq1i |
|- ( ( 3 x. -u 3 ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) |
| 54 |
51 53
|
eqtrdi |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) |
| 55 |
54
|
olcd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) |
| 56 |
55
|
ex |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) |
| 57 |
|
simpll |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> A e. ZZ ) |
| 58 |
7 25
|
mp1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> -u 3 e. ZZ ) |
| 59 |
|
simplr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> B e. ZZ ) |
| 60 |
12
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> 8 e. RR+ ) |
| 61 |
|
simprl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( A mod 8 ) = 5 ) |
| 62 |
61 31
|
eqtr4di |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( A mod 8 ) = ( -u 3 mod 8 ) ) |
| 63 |
|
simprr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( B mod 8 ) = 5 ) |
| 64 |
63 31
|
eqtr4di |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( B mod 8 ) = ( -u 3 mod 8 ) ) |
| 65 |
57 58 59 58 60 62 64
|
modmul12d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( ( A x. B ) mod 8 ) = ( ( -u 3 x. -u 3 ) mod 8 ) ) |
| 66 |
36 36
|
mul2negi |
|- ( -u 3 x. -u 3 ) = ( 3 x. 3 ) |
| 67 |
66
|
oveq1i |
|- ( ( -u 3 x. -u 3 ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) |
| 68 |
65 67
|
eqtrdi |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) ) |
| 69 |
68
|
orcd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) |
| 70 |
69
|
ex |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) |
| 71 |
23 41 56 70
|
ccased |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( ( A mod 8 ) = 3 \/ ( A mod 8 ) = 5 ) /\ ( ( B mod 8 ) = 3 \/ ( B mod 8 ) = 5 ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) |
| 72 |
5 71
|
biimtrid |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A mod 8 ) e. { 3 , 5 } /\ ( B mod 8 ) e. { 3 , 5 } ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) |
| 73 |
72
|
imp |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) e. { 3 , 5 } /\ ( B mod 8 ) e. { 3 , 5 } ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) |
| 74 |
|
ovex |
|- ( ( A x. B ) mod 8 ) e. _V |
| 75 |
74
|
elpr |
|- ( ( ( A x. B ) mod 8 ) e. { ( ( 3 x. 3 ) mod 8 ) , ( -u ( 3 x. 3 ) mod 8 ) } <-> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) |
| 76 |
73 75
|
sylibr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) e. { 3 , 5 } /\ ( B mod 8 ) e. { 3 , 5 } ) ) -> ( ( A x. B ) mod 8 ) e. { ( ( 3 x. 3 ) mod 8 ) , ( -u ( 3 x. 3 ) mod 8 ) } ) |
| 77 |
|
df-9 |
|- 9 = ( 8 + 1 ) |
| 78 |
|
8cn |
|- 8 e. CC |
| 79 |
|
ax-1cn |
|- 1 e. CC |
| 80 |
78 79
|
addcomi |
|- ( 8 + 1 ) = ( 1 + 8 ) |
| 81 |
77 80
|
eqtri |
|- 9 = ( 1 + 8 ) |
| 82 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
| 83 |
78
|
mullidi |
|- ( 1 x. 8 ) = 8 |
| 84 |
83
|
oveq2i |
|- ( 1 + ( 1 x. 8 ) ) = ( 1 + 8 ) |
| 85 |
81 82 84
|
3eqtr4i |
|- ( 3 x. 3 ) = ( 1 + ( 1 x. 8 ) ) |
| 86 |
85
|
oveq1i |
|- ( ( 3 x. 3 ) mod 8 ) = ( ( 1 + ( 1 x. 8 ) ) mod 8 ) |
| 87 |
|
1re |
|- 1 e. RR |
| 88 |
|
1z |
|- 1 e. ZZ |
| 89 |
|
modcyc |
|- ( ( 1 e. RR /\ 8 e. RR+ /\ 1 e. ZZ ) -> ( ( 1 + ( 1 x. 8 ) ) mod 8 ) = ( 1 mod 8 ) ) |
| 90 |
87 12 88 89
|
mp3an |
|- ( ( 1 + ( 1 x. 8 ) ) mod 8 ) = ( 1 mod 8 ) |
| 91 |
86 90
|
eqtri |
|- ( ( 3 x. 3 ) mod 8 ) = ( 1 mod 8 ) |
| 92 |
15
|
simpli |
|- ( ( 1 mod 8 ) = 1 /\ ( -u 1 mod 8 ) = 7 ) |
| 93 |
92
|
simpli |
|- ( 1 mod 8 ) = 1 |
| 94 |
91 93
|
eqtri |
|- ( ( 3 x. 3 ) mod 8 ) = 1 |
| 95 |
|
znegcl |
|- ( 1 e. ZZ -> -u 1 e. ZZ ) |
| 96 |
88 95
|
mp1i |
|- ( T. -> -u 1 e. ZZ ) |
| 97 |
|
3nn |
|- 3 e. NN |
| 98 |
97 97
|
nnmulcli |
|- ( 3 x. 3 ) e. NN |
| 99 |
98
|
nnzi |
|- ( 3 x. 3 ) e. ZZ |
| 100 |
99
|
a1i |
|- ( T. -> ( 3 x. 3 ) e. ZZ ) |
| 101 |
88
|
a1i |
|- ( T. -> 1 e. ZZ ) |
| 102 |
12
|
a1i |
|- ( T. -> 8 e. RR+ ) |
| 103 |
|
eqidd |
|- ( T. -> ( -u 1 mod 8 ) = ( -u 1 mod 8 ) ) |
| 104 |
91
|
a1i |
|- ( T. -> ( ( 3 x. 3 ) mod 8 ) = ( 1 mod 8 ) ) |
| 105 |
96 96 100 101 102 103 104
|
modmul12d |
|- ( T. -> ( ( -u 1 x. ( 3 x. 3 ) ) mod 8 ) = ( ( -u 1 x. 1 ) mod 8 ) ) |
| 106 |
105
|
mptru |
|- ( ( -u 1 x. ( 3 x. 3 ) ) mod 8 ) = ( ( -u 1 x. 1 ) mod 8 ) |
| 107 |
36 36
|
mulcli |
|- ( 3 x. 3 ) e. CC |
| 108 |
107
|
mulm1i |
|- ( -u 1 x. ( 3 x. 3 ) ) = -u ( 3 x. 3 ) |
| 109 |
108
|
oveq1i |
|- ( ( -u 1 x. ( 3 x. 3 ) ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) |
| 110 |
79
|
mulm1i |
|- ( -u 1 x. 1 ) = -u 1 |
| 111 |
110
|
oveq1i |
|- ( ( -u 1 x. 1 ) mod 8 ) = ( -u 1 mod 8 ) |
| 112 |
106 109 111
|
3eqtr3i |
|- ( -u ( 3 x. 3 ) mod 8 ) = ( -u 1 mod 8 ) |
| 113 |
92
|
simpri |
|- ( -u 1 mod 8 ) = 7 |
| 114 |
112 113
|
eqtri |
|- ( -u ( 3 x. 3 ) mod 8 ) = 7 |
| 115 |
94 114
|
preq12i |
|- { ( ( 3 x. 3 ) mod 8 ) , ( -u ( 3 x. 3 ) mod 8 ) } = { 1 , 7 } |
| 116 |
76 115
|
eleqtrdi |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) e. { 3 , 5 } /\ ( B mod 8 ) e. { 3 , 5 } ) ) -> ( ( A x. B ) mod 8 ) e. { 1 , 7 } ) |