Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( x = B -> ( x /L N ) = ( B /L N ) ) |
2 |
1
|
oveq1d |
|- ( x = B -> ( ( x /L N ) x. ( 0 /L N ) ) = ( ( B /L N ) x. ( 0 /L N ) ) ) |
3 |
2
|
eqeq2d |
|- ( x = B -> ( ( 0 /L N ) = ( ( x /L N ) x. ( 0 /L N ) ) <-> ( 0 /L N ) = ( ( B /L N ) x. ( 0 /L N ) ) ) ) |
4 |
|
id |
|- ( x e. ZZ -> x e. ZZ ) |
5 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
6 |
|
lgscl |
|- ( ( x e. ZZ /\ N e. ZZ ) -> ( x /L N ) e. ZZ ) |
7 |
4 5 6
|
syl2anr |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( x /L N ) e. ZZ ) |
8 |
7
|
zcnd |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( x /L N ) e. CC ) |
9 |
8
|
adantr |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) = 0 ) -> ( x /L N ) e. CC ) |
10 |
9
|
mul01d |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) = 0 ) -> ( ( x /L N ) x. 0 ) = 0 ) |
11 |
|
simpr |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) = 0 ) -> ( 0 /L N ) = 0 ) |
12 |
11
|
oveq2d |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) = 0 ) -> ( ( x /L N ) x. ( 0 /L N ) ) = ( ( x /L N ) x. 0 ) ) |
13 |
10 12 11
|
3eqtr4rd |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) = 0 ) -> ( 0 /L N ) = ( ( x /L N ) x. ( 0 /L N ) ) ) |
14 |
|
0z |
|- 0 e. ZZ |
15 |
5
|
adantr |
|- ( ( N e. NN0 /\ x e. ZZ ) -> N e. ZZ ) |
16 |
|
lgsne0 |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( ( 0 /L N ) =/= 0 <-> ( 0 gcd N ) = 1 ) ) |
17 |
14 15 16
|
sylancr |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( ( 0 /L N ) =/= 0 <-> ( 0 gcd N ) = 1 ) ) |
18 |
|
gcdcom |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 gcd N ) = ( N gcd 0 ) ) |
19 |
14 15 18
|
sylancr |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( 0 gcd N ) = ( N gcd 0 ) ) |
20 |
|
nn0gcdid0 |
|- ( N e. NN0 -> ( N gcd 0 ) = N ) |
21 |
20
|
adantr |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( N gcd 0 ) = N ) |
22 |
19 21
|
eqtrd |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( 0 gcd N ) = N ) |
23 |
22
|
eqeq1d |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( ( 0 gcd N ) = 1 <-> N = 1 ) ) |
24 |
|
lgs1 |
|- ( x e. ZZ -> ( x /L 1 ) = 1 ) |
25 |
24
|
adantl |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( x /L 1 ) = 1 ) |
26 |
|
oveq2 |
|- ( N = 1 -> ( x /L N ) = ( x /L 1 ) ) |
27 |
26
|
eqeq1d |
|- ( N = 1 -> ( ( x /L N ) = 1 <-> ( x /L 1 ) = 1 ) ) |
28 |
25 27
|
syl5ibrcom |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( N = 1 -> ( x /L N ) = 1 ) ) |
29 |
23 28
|
sylbid |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( ( 0 gcd N ) = 1 -> ( x /L N ) = 1 ) ) |
30 |
17 29
|
sylbid |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( ( 0 /L N ) =/= 0 -> ( x /L N ) = 1 ) ) |
31 |
30
|
imp |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) =/= 0 ) -> ( x /L N ) = 1 ) |
32 |
31
|
oveq1d |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) =/= 0 ) -> ( ( x /L N ) x. ( 0 /L N ) ) = ( 1 x. ( 0 /L N ) ) ) |
33 |
5
|
ad2antrr |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) =/= 0 ) -> N e. ZZ ) |
34 |
|
lgscl |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 /L N ) e. ZZ ) |
35 |
14 33 34
|
sylancr |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) =/= 0 ) -> ( 0 /L N ) e. ZZ ) |
36 |
35
|
zcnd |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) =/= 0 ) -> ( 0 /L N ) e. CC ) |
37 |
36
|
mulid2d |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) =/= 0 ) -> ( 1 x. ( 0 /L N ) ) = ( 0 /L N ) ) |
38 |
32 37
|
eqtr2d |
|- ( ( ( N e. NN0 /\ x e. ZZ ) /\ ( 0 /L N ) =/= 0 ) -> ( 0 /L N ) = ( ( x /L N ) x. ( 0 /L N ) ) ) |
39 |
13 38
|
pm2.61dane |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( 0 /L N ) = ( ( x /L N ) x. ( 0 /L N ) ) ) |
40 |
39
|
ralrimiva |
|- ( N e. NN0 -> A. x e. ZZ ( 0 /L N ) = ( ( x /L N ) x. ( 0 /L N ) ) ) |
41 |
40
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> A. x e. ZZ ( 0 /L N ) = ( ( x /L N ) x. ( 0 /L N ) ) ) |
42 |
|
simp2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> B e. ZZ ) |
43 |
3 41 42
|
rspcdva |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( 0 /L N ) = ( ( B /L N ) x. ( 0 /L N ) ) ) |
44 |
43
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> ( 0 /L N ) = ( ( B /L N ) x. ( 0 /L N ) ) ) |
45 |
5
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> N e. ZZ ) |
46 |
14 45 34
|
sylancr |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( 0 /L N ) e. ZZ ) |
47 |
46
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( 0 /L N ) e. CC ) |
48 |
47
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> ( 0 /L N ) e. CC ) |
49 |
|
lgscl |
|- ( ( B e. ZZ /\ N e. ZZ ) -> ( B /L N ) e. ZZ ) |
50 |
42 45 49
|
syl2anc |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( B /L N ) e. ZZ ) |
51 |
50
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( B /L N ) e. CC ) |
52 |
51
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> ( B /L N ) e. CC ) |
53 |
48 52
|
mulcomd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> ( ( 0 /L N ) x. ( B /L N ) ) = ( ( B /L N ) x. ( 0 /L N ) ) ) |
54 |
44 53
|
eqtr4d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> ( 0 /L N ) = ( ( 0 /L N ) x. ( B /L N ) ) ) |
55 |
|
oveq1 |
|- ( A = 0 -> ( A x. B ) = ( 0 x. B ) ) |
56 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
57 |
56
|
3ad2ant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> B e. CC ) |
58 |
57
|
mul02d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( 0 x. B ) = 0 ) |
59 |
55 58
|
sylan9eqr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> ( A x. B ) = 0 ) |
60 |
59
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> ( ( A x. B ) /L N ) = ( 0 /L N ) ) |
61 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> A = 0 ) |
62 |
61
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> ( A /L N ) = ( 0 /L N ) ) |
63 |
62
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> ( ( A /L N ) x. ( B /L N ) ) = ( ( 0 /L N ) x. ( B /L N ) ) ) |
64 |
54 60 63
|
3eqtr4d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ A = 0 ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |
65 |
|
oveq1 |
|- ( x = A -> ( x /L N ) = ( A /L N ) ) |
66 |
65
|
oveq1d |
|- ( x = A -> ( ( x /L N ) x. ( 0 /L N ) ) = ( ( A /L N ) x. ( 0 /L N ) ) ) |
67 |
66
|
eqeq2d |
|- ( x = A -> ( ( 0 /L N ) = ( ( x /L N ) x. ( 0 /L N ) ) <-> ( 0 /L N ) = ( ( A /L N ) x. ( 0 /L N ) ) ) ) |
68 |
|
simp1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> A e. ZZ ) |
69 |
67 41 68
|
rspcdva |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( 0 /L N ) = ( ( A /L N ) x. ( 0 /L N ) ) ) |
70 |
69
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ B = 0 ) -> ( 0 /L N ) = ( ( A /L N ) x. ( 0 /L N ) ) ) |
71 |
|
oveq2 |
|- ( B = 0 -> ( A x. B ) = ( A x. 0 ) ) |
72 |
68
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> A e. CC ) |
73 |
72
|
mul01d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A x. 0 ) = 0 ) |
74 |
71 73
|
sylan9eqr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ B = 0 ) -> ( A x. B ) = 0 ) |
75 |
74
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ B = 0 ) -> ( ( A x. B ) /L N ) = ( 0 /L N ) ) |
76 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ B = 0 ) -> B = 0 ) |
77 |
76
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ B = 0 ) -> ( B /L N ) = ( 0 /L N ) ) |
78 |
77
|
oveq2d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ B = 0 ) -> ( ( A /L N ) x. ( B /L N ) ) = ( ( A /L N ) x. ( 0 /L N ) ) ) |
79 |
70 75 78
|
3eqtr4d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ B = 0 ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |
80 |
|
lgsdir |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |
81 |
5 80
|
syl3anl3 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |
82 |
64 79 81
|
pm2.61da2ne |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |