| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P = 2 ) -> A e. ZZ ) |
| 2 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P = 2 ) -> B e. ZZ ) |
| 3 |
|
lgsdir2 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A x. B ) /L 2 ) = ( ( A /L 2 ) x. ( B /L 2 ) ) ) |
| 4 |
1 2 3
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P = 2 ) -> ( ( A x. B ) /L 2 ) = ( ( A /L 2 ) x. ( B /L 2 ) ) ) |
| 5 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P = 2 ) -> P = 2 ) |
| 6 |
5
|
oveq2d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P = 2 ) -> ( ( A x. B ) /L P ) = ( ( A x. B ) /L 2 ) ) |
| 7 |
5
|
oveq2d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P = 2 ) -> ( A /L P ) = ( A /L 2 ) ) |
| 8 |
5
|
oveq2d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P = 2 ) -> ( B /L P ) = ( B /L 2 ) ) |
| 9 |
7 8
|
oveq12d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P = 2 ) -> ( ( A /L P ) x. ( B /L P ) ) = ( ( A /L 2 ) x. ( B /L 2 ) ) ) |
| 10 |
4 6 9
|
3eqtr4d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P = 2 ) -> ( ( A x. B ) /L P ) = ( ( A /L P ) x. ( B /L P ) ) ) |
| 11 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> A e. ZZ ) |
| 12 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> B e. ZZ ) |
| 13 |
11 12
|
zmulcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( A x. B ) e. ZZ ) |
| 14 |
|
simpl3 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> P e. Prime ) |
| 15 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 16 |
14 15
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> P e. ZZ ) |
| 17 |
|
lgscl |
|- ( ( ( A x. B ) e. ZZ /\ P e. ZZ ) -> ( ( A x. B ) /L P ) e. ZZ ) |
| 18 |
13 16 17
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A x. B ) /L P ) e. ZZ ) |
| 19 |
18
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A x. B ) /L P ) e. CC ) |
| 20 |
|
lgscl |
|- ( ( A e. ZZ /\ P e. ZZ ) -> ( A /L P ) e. ZZ ) |
| 21 |
11 16 20
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( A /L P ) e. ZZ ) |
| 22 |
|
lgscl |
|- ( ( B e. ZZ /\ P e. ZZ ) -> ( B /L P ) e. ZZ ) |
| 23 |
12 16 22
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( B /L P ) e. ZZ ) |
| 24 |
21 23
|
zmulcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A /L P ) x. ( B /L P ) ) e. ZZ ) |
| 25 |
24
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A /L P ) x. ( B /L P ) ) e. CC ) |
| 26 |
19 25
|
subcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) e. CC ) |
| 27 |
26
|
abscld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) e. RR ) |
| 28 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 29 |
14 28
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> P e. NN ) |
| 30 |
29
|
nnrpd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> P e. RR+ ) |
| 31 |
26
|
absge0d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> 0 <_ ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) ) |
| 32 |
|
2re |
|- 2 e. RR |
| 33 |
32
|
a1i |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> 2 e. RR ) |
| 34 |
29
|
nnred |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> P e. RR ) |
| 35 |
19
|
abscld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( abs ` ( ( A x. B ) /L P ) ) e. RR ) |
| 36 |
25
|
abscld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( abs ` ( ( A /L P ) x. ( B /L P ) ) ) e. RR ) |
| 37 |
35 36
|
readdcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( abs ` ( ( A x. B ) /L P ) ) + ( abs ` ( ( A /L P ) x. ( B /L P ) ) ) ) e. RR ) |
| 38 |
19 25
|
abs2dif2d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) <_ ( ( abs ` ( ( A x. B ) /L P ) ) + ( abs ` ( ( A /L P ) x. ( B /L P ) ) ) ) ) |
| 39 |
|
1red |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> 1 e. RR ) |
| 40 |
|
lgsle1 |
|- ( ( ( A x. B ) e. ZZ /\ P e. ZZ ) -> ( abs ` ( ( A x. B ) /L P ) ) <_ 1 ) |
| 41 |
13 16 40
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( abs ` ( ( A x. B ) /L P ) ) <_ 1 ) |
| 42 |
|
eqid |
|- { x e. ZZ | ( abs ` x ) <_ 1 } = { x e. ZZ | ( abs ` x ) <_ 1 } |
| 43 |
42
|
lgscl2 |
|- ( ( A e. ZZ /\ P e. ZZ ) -> ( A /L P ) e. { x e. ZZ | ( abs ` x ) <_ 1 } ) |
| 44 |
11 16 43
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( A /L P ) e. { x e. ZZ | ( abs ` x ) <_ 1 } ) |
| 45 |
42
|
lgscl2 |
|- ( ( B e. ZZ /\ P e. ZZ ) -> ( B /L P ) e. { x e. ZZ | ( abs ` x ) <_ 1 } ) |
| 46 |
12 16 45
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( B /L P ) e. { x e. ZZ | ( abs ` x ) <_ 1 } ) |
| 47 |
42
|
lgslem3 |
|- ( ( ( A /L P ) e. { x e. ZZ | ( abs ` x ) <_ 1 } /\ ( B /L P ) e. { x e. ZZ | ( abs ` x ) <_ 1 } ) -> ( ( A /L P ) x. ( B /L P ) ) e. { x e. ZZ | ( abs ` x ) <_ 1 } ) |
| 48 |
44 46 47
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A /L P ) x. ( B /L P ) ) e. { x e. ZZ | ( abs ` x ) <_ 1 } ) |
| 49 |
|
fveq2 |
|- ( x = ( ( A /L P ) x. ( B /L P ) ) -> ( abs ` x ) = ( abs ` ( ( A /L P ) x. ( B /L P ) ) ) ) |
| 50 |
49
|
breq1d |
|- ( x = ( ( A /L P ) x. ( B /L P ) ) -> ( ( abs ` x ) <_ 1 <-> ( abs ` ( ( A /L P ) x. ( B /L P ) ) ) <_ 1 ) ) |
| 51 |
50
|
elrab |
|- ( ( ( A /L P ) x. ( B /L P ) ) e. { x e. ZZ | ( abs ` x ) <_ 1 } <-> ( ( ( A /L P ) x. ( B /L P ) ) e. ZZ /\ ( abs ` ( ( A /L P ) x. ( B /L P ) ) ) <_ 1 ) ) |
| 52 |
51
|
simprbi |
|- ( ( ( A /L P ) x. ( B /L P ) ) e. { x e. ZZ | ( abs ` x ) <_ 1 } -> ( abs ` ( ( A /L P ) x. ( B /L P ) ) ) <_ 1 ) |
| 53 |
48 52
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( abs ` ( ( A /L P ) x. ( B /L P ) ) ) <_ 1 ) |
| 54 |
35 36 39 39 41 53
|
le2addd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( abs ` ( ( A x. B ) /L P ) ) + ( abs ` ( ( A /L P ) x. ( B /L P ) ) ) ) <_ ( 1 + 1 ) ) |
| 55 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 56 |
54 55
|
breqtrrdi |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( abs ` ( ( A x. B ) /L P ) ) + ( abs ` ( ( A /L P ) x. ( B /L P ) ) ) ) <_ 2 ) |
| 57 |
27 37 33 38 56
|
letrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) <_ 2 ) |
| 58 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 59 |
|
eluzle |
|- ( P e. ( ZZ>= ` 2 ) -> 2 <_ P ) |
| 60 |
14 58 59
|
3syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> 2 <_ P ) |
| 61 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> P =/= 2 ) |
| 62 |
|
ltlen |
|- ( ( 2 e. RR /\ P e. RR ) -> ( 2 < P <-> ( 2 <_ P /\ P =/= 2 ) ) ) |
| 63 |
32 34 62
|
sylancr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( 2 < P <-> ( 2 <_ P /\ P =/= 2 ) ) ) |
| 64 |
60 61 63
|
mpbir2and |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> 2 < P ) |
| 65 |
27 33 34 57 64
|
lelttrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) < P ) |
| 66 |
|
modid |
|- ( ( ( ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) e. RR /\ P e. RR+ ) /\ ( 0 <_ ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) /\ ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) < P ) ) -> ( ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) mod P ) = ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) ) |
| 67 |
27 30 31 65 66
|
syl22anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) mod P ) = ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) ) |
| 68 |
11
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> A e. CC ) |
| 69 |
12
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> B e. CC ) |
| 70 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
| 71 |
14 61 70
|
sylanbrc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> P e. ( Prime \ { 2 } ) ) |
| 72 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
| 73 |
71 72
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( P - 1 ) / 2 ) e. NN ) |
| 74 |
73
|
nnnn0d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
| 75 |
68 69 74
|
mulexpd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A x. B ) ^ ( ( P - 1 ) / 2 ) ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) x. ( B ^ ( ( P - 1 ) / 2 ) ) ) ) |
| 76 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
| 77 |
11 74 76
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
| 78 |
77
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. CC ) |
| 79 |
|
zexpcl |
|- ( ( B e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( B ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
| 80 |
12 74 79
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( B ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
| 81 |
80
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( B ^ ( ( P - 1 ) / 2 ) ) e. CC ) |
| 82 |
78 81
|
mulcomd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A ^ ( ( P - 1 ) / 2 ) ) x. ( B ^ ( ( P - 1 ) / 2 ) ) ) = ( ( B ^ ( ( P - 1 ) / 2 ) ) x. ( A ^ ( ( P - 1 ) / 2 ) ) ) ) |
| 83 |
75 82
|
eqtrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A x. B ) ^ ( ( P - 1 ) / 2 ) ) = ( ( B ^ ( ( P - 1 ) / 2 ) ) x. ( A ^ ( ( P - 1 ) / 2 ) ) ) ) |
| 84 |
83
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( A x. B ) ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( ( B ^ ( ( P - 1 ) / 2 ) ) x. ( A ^ ( ( P - 1 ) / 2 ) ) ) mod P ) ) |
| 85 |
|
lgsvalmod |
|- ( ( ( A x. B ) e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A x. B ) /L P ) mod P ) = ( ( ( A x. B ) ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
| 86 |
13 71 85
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( A x. B ) /L P ) mod P ) = ( ( ( A x. B ) ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
| 87 |
21
|
zred |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( A /L P ) e. RR ) |
| 88 |
77
|
zred |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. RR ) |
| 89 |
|
lgsvalmod |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) mod P ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
| 90 |
11 71 89
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A /L P ) mod P ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
| 91 |
|
modmul1 |
|- ( ( ( ( A /L P ) e. RR /\ ( A ^ ( ( P - 1 ) / 2 ) ) e. RR ) /\ ( ( B /L P ) e. ZZ /\ P e. RR+ ) /\ ( ( A /L P ) mod P ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) mod P ) ) -> ( ( ( A /L P ) x. ( B /L P ) ) mod P ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) x. ( B /L P ) ) mod P ) ) |
| 92 |
87 88 23 30 90 91
|
syl221anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( A /L P ) x. ( B /L P ) ) mod P ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) x. ( B /L P ) ) mod P ) ) |
| 93 |
23
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( B /L P ) e. CC ) |
| 94 |
78 93
|
mulcomd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A ^ ( ( P - 1 ) / 2 ) ) x. ( B /L P ) ) = ( ( B /L P ) x. ( A ^ ( ( P - 1 ) / 2 ) ) ) ) |
| 95 |
94
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) x. ( B /L P ) ) mod P ) = ( ( ( B /L P ) x. ( A ^ ( ( P - 1 ) / 2 ) ) ) mod P ) ) |
| 96 |
23
|
zred |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( B /L P ) e. RR ) |
| 97 |
80
|
zred |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( B ^ ( ( P - 1 ) / 2 ) ) e. RR ) |
| 98 |
|
lgsvalmod |
|- ( ( B e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( B /L P ) mod P ) = ( ( B ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
| 99 |
12 71 98
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( B /L P ) mod P ) = ( ( B ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
| 100 |
|
modmul1 |
|- ( ( ( ( B /L P ) e. RR /\ ( B ^ ( ( P - 1 ) / 2 ) ) e. RR ) /\ ( ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ /\ P e. RR+ ) /\ ( ( B /L P ) mod P ) = ( ( B ^ ( ( P - 1 ) / 2 ) ) mod P ) ) -> ( ( ( B /L P ) x. ( A ^ ( ( P - 1 ) / 2 ) ) ) mod P ) = ( ( ( B ^ ( ( P - 1 ) / 2 ) ) x. ( A ^ ( ( P - 1 ) / 2 ) ) ) mod P ) ) |
| 101 |
96 97 77 30 99 100
|
syl221anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( B /L P ) x. ( A ^ ( ( P - 1 ) / 2 ) ) ) mod P ) = ( ( ( B ^ ( ( P - 1 ) / 2 ) ) x. ( A ^ ( ( P - 1 ) / 2 ) ) ) mod P ) ) |
| 102 |
92 95 101
|
3eqtrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( A /L P ) x. ( B /L P ) ) mod P ) = ( ( ( B ^ ( ( P - 1 ) / 2 ) ) x. ( A ^ ( ( P - 1 ) / 2 ) ) ) mod P ) ) |
| 103 |
84 86 102
|
3eqtr4d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( A x. B ) /L P ) mod P ) = ( ( ( A /L P ) x. ( B /L P ) ) mod P ) ) |
| 104 |
|
moddvds |
|- ( ( P e. NN /\ ( ( A x. B ) /L P ) e. ZZ /\ ( ( A /L P ) x. ( B /L P ) ) e. ZZ ) -> ( ( ( ( A x. B ) /L P ) mod P ) = ( ( ( A /L P ) x. ( B /L P ) ) mod P ) <-> P || ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) ) |
| 105 |
29 18 24 104
|
syl3anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( ( A x. B ) /L P ) mod P ) = ( ( ( A /L P ) x. ( B /L P ) ) mod P ) <-> P || ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) ) |
| 106 |
103 105
|
mpbid |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> P || ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) |
| 107 |
18 24
|
zsubcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) e. ZZ ) |
| 108 |
|
dvdsabsb |
|- ( ( P e. ZZ /\ ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) e. ZZ ) -> ( P || ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) <-> P || ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) ) ) |
| 109 |
16 107 108
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( P || ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) <-> P || ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) ) ) |
| 110 |
106 109
|
mpbid |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> P || ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) ) |
| 111 |
|
dvdsmod0 |
|- ( ( P e. NN /\ P || ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) ) -> ( ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) mod P ) = 0 ) |
| 112 |
29 110 111
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) mod P ) = 0 ) |
| 113 |
67 112
|
eqtr3d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( abs ` ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) ) = 0 ) |
| 114 |
26 113
|
abs00d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( ( A x. B ) /L P ) - ( ( A /L P ) x. ( B /L P ) ) ) = 0 ) |
| 115 |
19 25 114
|
subeq0d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( ( A x. B ) /L P ) = ( ( A /L P ) x. ( B /L P ) ) ) |
| 116 |
10 115
|
pm2.61dane |
|- ( ( A e. ZZ /\ B e. ZZ /\ P e. Prime ) -> ( ( A x. B ) /L P ) = ( ( A /L P ) x. ( B /L P ) ) ) |