Description: The function F has magnitude less or equal to 1 . (Contributed by Mario Carneiro, 4-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lgsval.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) |
|
Assertion | lgsfle1 | |- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M e. NN ) -> ( abs ` ( F ` M ) ) <_ 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsval.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) |
|
2 | eqid | |- { x e. ZZ | ( abs ` x ) <_ 1 } = { x e. ZZ | ( abs ` x ) <_ 1 } |
|
3 | 1 2 | lgsfcl2 | |- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F : NN --> { x e. ZZ | ( abs ` x ) <_ 1 } ) |
4 | 3 | ffvelrnda | |- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M e. NN ) -> ( F ` M ) e. { x e. ZZ | ( abs ` x ) <_ 1 } ) |
5 | fveq2 | |- ( x = ( F ` M ) -> ( abs ` x ) = ( abs ` ( F ` M ) ) ) |
|
6 | 5 | breq1d | |- ( x = ( F ` M ) -> ( ( abs ` x ) <_ 1 <-> ( abs ` ( F ` M ) ) <_ 1 ) ) |
7 | 6 | elrab | |- ( ( F ` M ) e. { x e. ZZ | ( abs ` x ) <_ 1 } <-> ( ( F ` M ) e. ZZ /\ ( abs ` ( F ` M ) ) <_ 1 ) ) |
8 | 7 | simprbi | |- ( ( F ` M ) e. { x e. ZZ | ( abs ` x ) <_ 1 } -> ( abs ` ( F ` M ) ) <_ 1 ) |
9 | 4 8 | syl | |- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M e. NN ) -> ( abs ` ( F ` M ) ) <_ 1 ) |